1 Feb

纠缠的时空(一):洛仑兹变换的矩阵

我现在是越来越佩服爱因斯坦了,他的相对论是他天才的思想的充分体现。只有当相对论提出之后,宏观物理的大多数现象和规律才得到了统一的描述。狭义相对论中爱因斯坦对我们速度叠加常识的否定已经显示了他莫大的勇气,而一项头脑风暴性的工作——广义相对论则将他惊人的创造力体现得完美无瑕。我是被量子力学的数学吸引的,于相对论则是被相对论美妙的逻辑体系吸引。当然,其中也有相当美妙的数学。

狭义相对论中的核心内容之一就是被称为洛仑兹变换的东西,这在相对论发表之前已经由洛仑兹推导出来了,只不过他不承认他的物理意义,也就没有就此进行一次物理革命,革命的任务则由爱因斯坦完成。很久前我就已经看过洛仑兹变换的推导,那是直接设一种线性关系来求解的。但是我总感觉那样的推导不够清晰(也许是我的理解方式有问题吧),而且没有说明狭义相对论的两条原理如何体现出现。所以在研究过矩阵之后,我就尝试用矩阵来推导洛仑兹变换,发现效果挺好的,而且我觉得能够体现出相对论中的对称性。

两条原理

1、狭义相对性原理:在所有惯性系中,物理定律有相同的表达形式。这是力学相对性原理的推广,它适用于一切物理定律,其本质是所有惯性系平权。

2、光速不变原理:所有惯性系中,真空中的光速都等于c=299 792 458 m/s,与光源运动无关。迈克耳孙-莫雷实验是其有力证明。

点击阅读全文...

6 Feb

轻微的扰动——摄动法简介(2)

为了让大家更加熟悉摄动法的基本步骤,本文再讲一个用摄动法解代数方程的例子。这是从实际研究中出来的:
$$\begin{eqnarray*} x=\frac{k(1+k^2+k^4+l^2)}{2(1+k^2)^2} \\ k=\frac{dy}{dx}\end{eqnarray*} $$

这是一道微分方程。要求解这道方程,最好的方法当然是先从第一式解出$k=k(x)$的形式然后再积分。但是由于五次方程没有一般的显式解,所以迫使我们要考虑近似解。当然,一般来说熟悉mathematica的人都会直接数值计算了。我这里只考虑摄动法。

我们将原方程变为下面的形式:
$$x=\frac{k}{2}[1+\frac{l^2}{(1+k^2)^2}]$$

点击阅读全文...

24 Mar

费曼积分法(6):教科书上的两道练习题

我们的《数学分析》教程上有两道比较有趣的定积分,经测试可以用费曼积分法的思路解决。

$$\begin{aligned}\int_0^1 \frac{\ln(1+x)}{1+x^2}dx \\ \int_0^{\pi} \frac{x \sin x}{1+\cos^2 x}dx\end{aligned}$$

No.1

点击阅读全文...

14 Apr

流体静力平衡的应用

很早以前我就对这个问题感兴趣了,但是一直搁置着,没有怎么研究。最近在阅读《引力与时空》的“潮汐力”那一节时重新回到了这个问题上,决定写点什么东西。在这里不深究流体静力平衡的定义,顾名思义地理解,它就是流体在某个特定的力场下所达到的平衡状态。流体静力学告诉我们:

达到流体静力平衡时,流体的面必定是一个等势面。

这是为什么呢?我们从数学的角度来简单分析一下:只考虑二维情况,假如等势面方程是$U(x,y)=C$,那么两边微分就有
$$0=dU=\frac{\partial U}{\partial x}dx+\frac{\partial U}{\partial y}dy=(\frac{\partial U}{\partial x},\frac{\partial U}{\partial y})\cdot (dx,dy)$$

这意味着向量$(\frac{\partial U}{\partial x},\frac{\partial U}{\partial y})$和向量$(dx,dy)$是垂直的,前者便是力的函数,后者就是一个切向量(三维就是一个切平面)。也就是说合外力必然和流体面垂直,这样才能提供一个相等的方向相反的内力让整个结构体系处于平衡状态!

点击阅读全文...

14 Apr

2^29365451-1不是素数

这是第三个结果,估计明天会有第四个结果。运行完这四个后就让电脑好好休息一下了,呵呵。
同样,$2^{29365451}-1$也不是素数!

[Comm thread Apr 14 14:51] Sending result to server: UID: bojone/bojone, M29365451 is not prime. Res64: C3207F669EEAE07E. We4: 46622147,3026845,00000000, AID:
[Comm thread Apr 14 14:51]
[Comm thread Apr 14 14:51] PrimeNet success code with additional info:
[Comm thread Apr 14 14:51] LL test successfully completes double-check of M29365451
[Comm thread Apr 14 14:51] CPU credit is 29.2023 GHz-days.
[Comm thread Apr 14 14:51] Done communicating with server.
20 Jun

《虚拟的实在(3)》——相对论动力学

半个多月没有写文章了,一是因为接近期末考了,比较忙,当然最主要的原因还是人变懒了,呵呵,别人是忙里偷闲,我是闲里偷懒了。

这篇文章主要跟大家分享一下相对论动力学的知识。我们之前已经接触过相对论的坐标变换了,接下来的任务应该是把经典力学的动力学定律改成为相对论版本的,这显然也是学习场论的必经之路——懂得如何构造力学定律的相对版版本,是懂得构造相对论性场的基础。和朗道的《力学》与《场论》一样,我们的主线就是“最小作用量原理”。让我们回忆一下,在经典力学中,一个自由粒子的作用量是

$$S_m=\int Ldt=\int \frac{1}{2} m v^2dt$$

点击阅读全文...

7 Jun

《虚拟的实在(2)》——为什么引力如此复杂?

上一篇文章里我已经从我自己的理解角度简单说了一下场论的必要性,这次让我们再次谈到这个话题,企图在文字层面上得到更深入的认识。

上一两周的时间,我一直在找资料,主要是线性引力的资料,并且发现了很多有趣的东西,在此一并与大家分享一下。首先,当我在Google中输入“线性引力”时,我发现了一本“奇书”,一本名副其实的“巨著”——《引力论》!洋洋1300多页的大作,三位“超级巨星”——C.W.麦思纳(Charles W.Misner)、K.S.索恩(Kip S.Thorne)、J.A.惠勒(John Archibald Wheeler)——联合编写,恐怕再也找不到哪本书可以PK它的“全明星阵容”了。该书英文名为Gravitation,中文是由台湾翻译的,繁体中文版。全书讲述了引力的研究历史和发展情况,更重要的是几乎每一处历史都给出了数学论证!最最重要的,作者惠勒还是跟爱因斯坦同一个研究时代的人,我们可以最真实的感受到那年代的研究。看到这里,我就迫不及待地想买了,由于各种原因,我们很难买到,到图书馆找,发现有英文版的,就马上借过来了,另外因为买不到中文版,我只好到网上买了电子版,然后打印出来了。不过不是很清晰,而且自我感觉中文翻译不是很好(当然,已经够我们阅读了)。

点击阅读全文...

5 Jul

齐次对称多项式初等表示的新尝试

这是我的这学期高等代数课的一个小论文。说到这里,其实我挺喜欢那些不用考试,通过平时考核以及写论文、报告或者做实验的方式来评成绩的方式,毕竟我觉得这才是比较综合地体现了知识和技能的水平(当然更重要的一个原因是我比较喜欢写作啦~~)。我们高等代数有两门课程,一是基本的上课,二是研讨课,分别考核。老师照顾我们,研讨课不用考试,写小论文就行了。Yeah~~

我写的是有关对称多项式的。其实这文章在半个学期之前就酝酿着了,当时刚学到对称多项式的初等表示。所谓初等表示,就是将一个多元对称多项式表示为$\sigma_1,\sigma_2,\sigma_3,...$的组合。其中
$$\begin{aligned}\sigma_1=x_1+x_2+...+x_n \\ \sigma_2=x_1 x_2+x_1 x_3+...+x_1 x_n+x_2 x_3+...+x_{n-1} x_n \\ ... \\ \sigma_n=x_1 x_2 ... x_n\end{aligned}$$
书本上给出了待定系数法,但是每次都要求解方程组,让我甚是烦恼,所以我研究直接展开的方案,最终得出了两种方法。当时也刚好接触着张量的知识,了解到“爱因斯坦求和约定”,于是想充分发挥其威力,就促成了这篇文章。其实我自定义了“方括弧”和“圆括弧”两种运算,都是符号上的简化。两种方法在某种意义上相互补充,笔者自感颇为满意,遂与大家分享。具体内容就不贴出来了,请大家下载pdf文件观看吧。

点击阅读全文...