9 Jan

精确自由落体运动定律的讨论(二)

跳伞过程中的自由落体阶段.jpg

之前在这篇文章中,我们使用过一个牛顿引力场中的自由落体公式:
$t=\sqrt{\frac{r_0}{2GM}}{r_0 \cdot arctg \sqrt{\frac{r_0 -r}{r}}+\sqrt{r(r_0 -r)}}$——(1)

我们来尝试一下推导出这个公式来。同时,站长在逐渐深入研究的过程中,发现微分方程极其重要。以前一些我认为不可能解决的问题,都用微分方程逐渐解决了。在以后的文章里,我们将会继续体验到微分方程的伟大魔力!因此,建议各位有志研究物理学的朋友,一定要掌握微分方程,更加深入的,需要用到偏微分方程!

首先,质量为m的物理在距离地心r处的引力为$\frac{GMm}{r^2}$,根据牛顿第二定律F=ma,自然下落的物体所获得的加速度为$\frac{GM}{r^2}$。假设物体从距离地心r开始向地心自由下落,求位移s关于t的函数s=s(t).

点击阅读全文...

26 Dec

精确自由落体运动定律的讨论

比萨斜塔.jpg

在初中或高中,自由落体试验简单地用这个公式来描述出来:
$$s=1/2 g t^2$$
其中$g=9.8m//s^2$,等于1kg物体在地球表面所受的重力。
但是这个公式很明显有一个问题,就是实际上在地球,g不是恒定的,会随着距离(即海拔高度)的变化而变化,上述公式能够在一定范围内描述自然落体运动。但是当距离很大时,公式便失效了。

点击阅读全文...

4 Apr

关于自由落体公式的简单修正

自由落体公式-示意图

自由落体公式-示意图

自由落体的一般定义是:只考虑吸引天体和被吸引天体的引力因素,忽略其他的运动和大气摩擦等因素,物体从静止(相对于吸引天体)开始接近吸引天体的运动。根据这个定义,假设地球为一个均匀球体,半径为r,质量为M,物体从距离地表h高度处自由落下。求落到地面的时间t,或者根据时间t求h。

令s为t时刻物体左右下落的物体与地表的距离,忽略物体的小质量,那么可以列出微分方程:
$$\frac{d^2 s}{dt^2}=-\frac{GM}{(r+s)^2}\tag{1}$$并且初始条件是$t=0,s=h,\dot{s}=v=0$

在实际应用中,我们不必求出这道微分方程的精确解,因为这个解极其麻烦,在之前曾经讨论过。我们只需要求出一个有足够精确度的近似解就行。

点击阅读全文...

21 Feb

大自然的隐身术——保护色

草蜢

草蜢

保护色(Crypsis)和拟态现象都表现为与环境色彩相似,不易被识别,保护色表现为与环境色彩相似,这里的“环境色彩”应是环境中主要的占优势的色彩,如春夏的草坪是绿色,冬天的雪地是白色;拟态是与环境中某种生物或非生物相似,而这种生物或非生物的颜色等特征并不一定在环境中占优势,并非主要色彩,保护色则与运动状态基本无关,如枯叶蝶停息在树枝上的模样像枯叶,“停息”状态才像枯叶,一旦飞舞起来就不像了。而我们捕捉昆虫也许都有这种体验:有时看到昆虫由这里飞向另一个地方,但马上在另一个地方搜寻,却不能立即找到。

点击阅读全文...

27 Nov

《自然极值》系列——1.前言

附:期中考过后,课程紧了,自由时间少了,因此科学空间的更新也放缓了。不过BoJone也会尽量地更新一些内容,和大家一同分享学习的乐趣。

闭区间[a,b]上的连续函数?(x),其最大值为红色点,最小值为蓝色点

闭区间[a,b]上的连续函数?(x),其最大值为红色点,最小值为蓝色点

上一周和这一周的时间里,BoJone将自己学习物理和极值的一些内容进行了总结和整合,写成了《自然极值》一文。因此从今天起,到十二月的大多数时间里,科学空间将和大家讲述并讨论关于“极值”的问题,希望读者会喜欢这部分内容。当然,我不是专业的研究人员,更不是经验丰富的物理和数学教师,甚至可以说是一个“乳臭未干的小子”,因此,错误在所难免,只希望同好不吝指出,更希冀能够起到我抛出的这一块“砖”能够引出美妙的“玉”。

点击阅读全文...

27 Nov

《自然极值》系列——2.费马原理

物理学的美不仅仅表现在简洁的公式上。我们还惊奇地发现,很多物理现象都是按照使某个变量达到极值的方式发生。一个典型的例子就是费马原理,它指出了光的传播路径的一个重要规律:光总是沿着所花时间最短的路径传播。这里我们将简单介绍一下费马原理。

费马原理俗称“最快到达原理”、“最小时间原理”。1657年,费马提出:

从P点到达Q点,在所有可行的路径中,光选择了所需时间最短的一条。
从P点到达Q点,在所有可行的路径中,光选择了所需时间为极值的一条。

这是一个极其奇妙的原理,也是自然界中最神奇的极值之一。作为非生物的光,居然自主地选择了最优路径,成为世界上“效率最高”的东西,这让人不得不佩服宇宙的伟大。这究竟是造物者的精心设计,还是无心之作?

点击阅读全文...

28 Nov

《自然极值》系列——3.平衡态公理

黄果树大瀑布

黄果树大瀑布

光学定律无疑是一个美妙的原理,而自然界中还存在另外一个我们随处可见的“公理”。平时的生活中,我们总能看见“水往低处流”的现象,这是因为水处于地球重力场的结果(也正因为如此,某些轻生者的自杀活动才得以顺利进行;当然,我们并不需要为了验证这一点而亲自试验。)。由此我们可以联想到一个名词:重力势能。“水往低处流”意味着什么呢?高度变低了。高度更低意味着什么呢?重力势能降低了!换句话说,自然界中物体有趋于势能最低的倾向。我们可以从这个角度来解释:体系总有趋于稳定的倾向,而拥有的能量(势能)越高,则越不稳定。

点击阅读全文...

9 Dec

《自然极值》系列——5.最速降线的故事

如果说前面关于这个系列的内容还不能使得读者您感到痛快,那么接下来要讲述的最速降线和悬链线问题也许能够满足你的需要。不过在进入对最速降线问题的理论探讨之前,我们先来讲述一个发生在17世纪的激动人心的数学竞赛的故事。我相信,每一个热爱数学和物理的朋友,都将会为其所振奋,为其所感动。里边渗透的,不仅仅是一次学术的竞争,更是一代又一代的人对真理的追求与探路的不懈精神。

(以下内容来源于网络,科学空间整理)

意大利科学家伽利略在1630年提出一个分析学的基本问题── “一个质点在重力作用下,从一个给定点A到不在它垂直下方的另一点B,如果不计摩擦力,问沿着什么曲线滑下所需时间最短。”这算是这个著名问题的起源了(为什么别人没有想起这个问题呢?所以说大科学家的素质就是思考、创新,要有思想,人没有思想,就和行尸走肉没有什么区别)。可惜的是伽利略说这曲线是圆,但这却是一个错误的答案。

Brachistochrone

Brachistochrone

点击阅读全文...