《自然极值》系列——5.最速降线的故事
By 苏剑林 | 2010-12-09 | 70222位读者 | 引用如果说前面关于这个系列的内容还不能使得读者您感到痛快,那么接下来要讲述的最速降线和悬链线问题也许能够满足你的需要。不过在进入对最速降线问题的理论探讨之前,我们先来讲述一个发生在17世纪的激动人心的数学竞赛的故事。我相信,每一个热爱数学和物理的朋友,都将会为其所振奋,为其所感动。里边渗透的,不仅仅是一次学术的竞争,更是一代又一代的人对真理的追求与探路的不懈精神。
(以下内容来源于网络,科学空间整理)
意大利科学家伽利略在1630年提出一个分析学的基本问题── “一个质点在重力作用下,从一个给定点A到不在它垂直下方的另一点B,如果不计摩擦力,问沿着什么曲线滑下所需时间最短。”这算是这个著名问题的起源了(为什么别人没有想起这个问题呢?所以说大科学家的素质就是思考、创新,要有思想,人没有思想,就和行尸走肉没有什么区别)。可惜的是伽利略说这曲线是圆,但这却是一个错误的答案。
正十七边形的尺规作图
By 苏剑林 | 2009-08-28 | 40417位读者 | 引用为何正17边形能够用尺规作出来?要如何作?先别急,请看下面的解释:
一个正质数多边形可以用标尺作图的充分和必要条件是,该多边形的边数必定是一个费马质数。换句话说,只有正三边形、正五边形、正十七边形、正257边形和正63357边形可以用尺规作出来,其它的正质数多边形就不可以了。(除非我们再发现另一个费马质数。)
正17边形的尺规作法是高斯在1796年得出的,他也因此决心要成为数学家。关于费马质数,是指形如$2^{2^n}+1$的质数,一开始费马认为对于所有的n,这种形式的数都是质数。可是这似乎是上天的玩笑,目前只发现了当n=0,1,2,3,4的时候$2^{2^n}+1$是质数,其余都是合数。
校准你的钟表(时间科普网站)
By 苏剑林 | 2009-08-16 | 32061位读者 | 引用前几天由于复位了BIOS,时间也复位了,因此,第一件事便是调整好时间。对于一个科学爱好者(特别是天文爱好者),精确的时间是必不可少的。
现在为大家提供一个“时间科普网站”:http://www.time.ac.cn (中文,北京时间)
除了让你能够调整时间,该网站还提供了一些时间的Flash:
(1)圆形钟表:http://www.time.ac.cn/img/clock.swf
(2)电子时钟:http://www.time.ac.cn/ntsctime/Time-Clock-Green-14-7.swf
(3)精确时间:http://www.time.ac.cn/img/digitalclock.swf
读者可根据自己网站的不同来进行调用这些Flash。
企图减缓美国数学进展的“阴谋”
By 苏剑林 | 2009-07-26 | 23672位读者 | 引用宇宙中存在所谓的“黑洞”,只要你步入了它的视界之内,就永远也出不去了(除非你能够超光速)。在数学中,也有类似的规则,只要把一个自然数代入这个规则,都无一不会陷入无限的循环之中,这样称之为“数字黑洞”。有一个“数字黑洞”,它令人十分着迷,甚至有人称它为“企图减缓美国数学进展的阴谋”——这就是“冰雹猜想”。
冰雹猜想:
任选一个自然数。当选定的自然数是偶数,将它除以2,如是奇数,将它乘以3加上1;当变换后的自然数成了偶数,再将它除以2,如成了奇数,再将它乘以3加上1,连续进行下去,最后都“落叶归根”——变成了1。
最近评论