22 Sep

军训中的数学——握手奇数次的人数

军训是比较辛苦,可是总有一些无聊的时刻。比如我们每次集合后的第一件事基本上都是站军姿,少则五分钟,长则二三十分钟,在这段时间里,头脑总得找点东西想才行,不然一动不动的,非常难熬。我就是在军训那些无聊的时刻里通过想数学问题来度过的。比如一有空余时间,我的头脑就浮现着级数$\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{p}$、哥德巴赫猜想、稳定性问题啦等等,并不是说要做出什么大发现,只是为了渡过无聊时间,也是对自己的思维能力和想象能力的锻炼吧。

之前提到过,昨天我们的“格斗方阵”去大学城表演了。在去大学城的过程中,我的一位“战友”问了我一个这样的问题:

在一个相互握手的人群中,握手奇数次的人总是有偶数个。每两个人可以握多于一次的手

他还说这是爱因斯坦提问的。这可把我的兴致给调动起来了。(后来我在网上搜索,却发现不了这个问题跟爱因斯坦的任何联系...)下边是我的颇有戏剧性的思考过程。

人群的握手问题

人群的握手问题

点击阅读全文...

25 Sep

又折腾网络了......

今晚主要干了两件事情:

1、实现了在windows 8的情况下,把自己的笔记本当做wifi的信号发射点,共享校园网(即“笔记本 wifi 热点”那技术,不知道这样会不会折损电脑寿命呀)。主要方法如下:
1.1、安装.net 3.5,安装方法:

挂载windows 8的安装光盘,
然后右击开始菜单(Win + X)的左下角,选择-命令提示符(管理员),接着然后输入如下命令:
dism.exe /online /enable-feature /featurename:NetFX3 /Source:F:\sources\sxs
其中F是安装光盘的驱动器符号。

接下来是漫长等待,估计会有十多分钟,就会提示安装进度100%了。

1.2、安装Connectify软件,直接到官网下载最新的精简版就行,有兴趣可以购买专业版。安装后需要重新启动,然后简单地配置一下就行了,不再细说。

附:
顺便提一下,我也试过国内的wifi共享精灵,但是发现它会卡在“查找当前配置信息”那里,这折腾了我几个小时,最终还是没有解决...所以还是用回外国软件了。

点击阅读全文...

26 Sep

均值不等式的两个巧妙证明

记得几年前,BoJone提供过一个证明均值不等式(代数—几何平均不等式)的方法,但是其中的证明有点长,有点让人眼花缭乱的感觉(虽然里边的思想还是挺简单的)。昨天在上《数学分析》课程的时候,老师讲到了这个不等式,也讲了他的证明,用的是数学归纳法,感觉还是没有那种简洁美和巧妙美。但这让我回想起了之前我研究过的两种巧妙证明方法,可是在昨天划了一整天,都没有把这两种方法回忆起来。直到今天才回想起来,所以就放在这里与大家分享,同时也作备忘之用。

对于若干个非负数$x_i$,我们有
$$\frac{x_1+x_2+...+x_n}{n} \geq \sqrt[n]{x_1 x_2 ... x_n}$$

记为$A_n \geq G_n$

证明1:数学归纳法
这个方法不算简单,但是非常巧妙,它从n递推到n+1的过程让人拍案叫绝。用数学归纳法证明詹森不等式也是同样的递推思路,而均值不等式不过是詹森不等式的一个特例而已。

假设$A_n \geq G_n$成立,要证$A_{n+1} \geq G_{n+1}$。我们有

$$\begin{aligned}&2n A_{n+1}=(n+1)A_{n+1}+(n-1)A_{n+1} \\
=&[x_1 + x_2 +...+x_n]+[x_{n+1}+(n-1)A_{n+1}] \\
\geq &nG_n+n(x_{n+1}\cdot A_{n+1}^{n-1})^{\frac{1}{n}} \\
\geq &2n(G_{n+1}^{n+1}\cdot A_{n+1}^{n-1})^{\frac{1}{2n}}\end{aligned}$$

点击阅读全文...

6 Oct

哥德巴赫猜想浅谈1

高斯说过“数学是科学的皇后,而算术则是数学的女王。”这里的“算术”,其实就是我们现在所说的数论。从很小的时候开始,我便对数论情有独钟。虽然后来接触了很多更为有趣的数学分支,但是对数学的热情依然不减。我想,这大概是因为小时候的情结吧。小学时候,小小年纪的我,刚刚学完素数、合数、约数、整除等等概念,对数字尤其有兴趣。我想,在那时候我唯一能够读懂的数学难题只有数论这一领域吧。比如费马大定理,$x^n+y^n=z^n$,对于n大于2没有正整数解,很容易就知道它在讲什么;再比如,哥德巴赫猜想,每个大于4的偶数都可以分拆成两个奇素数之和,也很简单就弄懂它讲的是什么。所以,小小的我看懂了这些问题后就饶有兴致地摆弄数字啦,也许正因为如此,才让我对数字乃至对数学都有深厚的爱。

哥德巴赫猜想,无疑是数论中的一个璀璨明珠,可是目前来讲,它还是可望不可即的。一个看似如此简单的猜想,却困惑了数学家几百年,至今无人能解。尽管如此,我还是愿意细细地研究它,慢慢地品味它,在“论证”、或者说验算它的时候,欣赏到数学那神秘的美妙。本文主要就是研究给定偶数的“哥德巴赫分拆数”,即通过实际验算得出每个偶数分拆为两个素数之和的不同分拆方式的数目,比如6=3+3,只有一种分拆方式;8=3+5=5+3;有两种分拆方式;10=3+7=5+5=7+3,有三种分拆方式;等等。偶数2n的分拆数记为$G_2 (2n)$。

(这里定义的“分拆数”跟网上以及一般文献中的定义不同,这里把3+5和5+3看成是两种分拆方式,而网上一般的定义是只看成一种。我这里的定义的好处在于分拆方式的数目实际表示了分拆中涉及到的所有素数的个数。)

哥德巴赫猜想很难,这话没错,但是事实上哥德巴赫猜想是一个非常弱的命题。它说“每个大于4的偶数至少可以分拆成两个奇素数之和”,用上面的术语来说,就是每个偶数的“哥德巴赫分拆数”大于或等于1。可是经过实际验算发现,偶数越大,它的哥德巴赫分拆数越大,两者整体上是呈正相关关系的,比如$G_2 (100)=12,G_2 (1000)=56,G_2 (10000)=254$......所以,从强弱程度上来讲,这和“少于n的素数至少有一个”是差不多的(当然,难度有天壤之别)。

点击阅读全文...

11 Oct

2012诺贝尔奖...

又是一年诺奖公布时......每年的这个时候,诺贝尔奖又会被热门地提及到,现在三个自然科学方面的奖项都已经公开了。简略收集如下:

诺贝尔生理学或医学奖
京都大学物质-细胞统合系统据点iPS细胞研究中心主任长山中伸弥(Shinya Yamanaka)、英国发育生物学家约翰-戈登因(John B. Gurdon)

2012诺贝尔生理学或医学奖

2012诺贝尔生理学或医学奖

原因:在细胞核重新编程研究领域的杰出贡献而获奖。所谓细胞核重编程即将成年体细胞重新诱导回早期干细胞状态,以用于形成各种类型的细胞,应用于临床医学。细胞核重编程指细胞内的基因表达由一种类型变成另一种类型。通过这一技术,可在同一个体上将较容易获得的细胞(如皮肤细胞)类型转变成另一种较难获得的细胞类型(如脑细胞)。这一技术的实现将能避免异体移植产生的排异反应。

点击阅读全文...

11 Oct

中国第一个诺贝尔奖得主

他就是莫言。

yan_slide

yan_slide

今天晚上七点钟,诺贝尔奖官方网站这样说:

The Nobel Prize in Literature 2012 was awarded to Mo Yan "who with hallucinatory realism merges folk tales, history and the contemporary".

莫言将现实和幻想、历史和社会角度结合在一起。他创作中的世界令人联想起福克纳和马尔克斯作品的融合,同时又在中国传统文学和口头文学中寻找到一个出发点。

点击阅读全文...

26 Nov

《环球科学》:超越费曼图

虽然文章的大部分内容我都还无法弄懂,但是这里边讲述的振奋人心的内容让我决定把它转载过来。文章说,将大自然的各种力统一起来,或许没有物理学家原来所想的那么困难。

撰文∕ 伯尔尼(Zvi Bern)、狄克森(Lance J. Dixon)寇索尔(David A. Kosower)
翻译∕ 高涌泉(台湾大学物理系教授)
提供/ 科学人(Scientific American繁体中文版)

重点提要

物理学家对于粒子碰撞的了解,最近经历了一场宁静革命。知名物理学家费曼所引入的观念对于很多应用而言已到达极限。作者与合作者已经发展出新的方法。

物理学家利用新方法,可以更可靠地描述在大强子对撞机(LHC)那种极端条件下普通粒子的行为,这将帮助实验学家寻找新粒子与新作用力。

新方法还有更为深刻的应用:它让一种于1980年代被物理学家放弃的统一理论有了新生命,重力看起来像是双份的强核力一起作用。

春天某个晴朗的日子,本文作者狄克森从英国伦敦地铁的茂恩都站进入地铁,想前往希斯洛机场。伦敦地铁每天有300万名乘客,他瞧着其中一位陌生人,无聊地想着:这位老兄会从温布尔登站离开地铁的机率有多大?由于此人可能搭上任何一条地铁路线,所以该如何推算这个机率呢?他想了一会,领悟到这个问题其实跟粒子物理学家所面对的麻烦很像,那就是该如何预测现代高能实验中粒子碰撞的后果。

欧洲核子研究组织(CERN)的大强子对撞机(LHC)是这个时代最重要的探索实验;它让质子以近乎光速前进并相撞,然后研究碰撞后的碎片。我们知道建造对撞机及侦测器得用上最尖端的技术,然而较不为人知的是,解释侦测器的发现同样也是极为困难的挑战。乍看之下,它不应该那么困难才对,因为基本粒子的标准模型早已确立,理论学家也一直用此模型来预测实验的结果,而且理论预测所依赖的是著名物理学家费曼(Richard P. Feynman)早在60多年前就发展出来的计算技巧,每位粒子物理学家在研究生阶段都学过费曼的技巧;关于粒子物理的每本科普书、每篇科普文章,也都借用了费曼的概念。

点击阅读全文...

16 Oct

相对论和量子力学的初探

=====大学学习=====

上大学已经一个多月了,除去军训的两周和国庆放假的一周,到现在已经是第三周上课了。我是数学专业的,由于是那个勷勤创新班,它希望我们都向研究型数学的方向发展,所以给我们“更多的自由研究时间”,所以课程比一般的班还少一点。由于高中已经对高等数学有个大概的了解,所以一开始让很多同学都喊苦的数学分析、解析几何于我而言都还是比较容易接受的。但从另外一个角度上来讲,我感觉我学得快的原因,倒不全是以前的积累,而是因为个人的学习方式。我不喜欢跟着老师的步伐走,我喜欢而且需要深入地思考和理解一个问题,希冀达到一理通百理明的效果,而不是做完一题紧接着下一题。因为我认为这种竞赛式的学习不能给我们带来实质性的进步,而且有可能抹杀了我们的创造力。

1979年爱因斯坦邮票

1979年爱因斯坦邮票

没有应用的数学是很枯燥乏味的,数学不能脱离物理、化学等领域。当然“应用”这个词有很广泛的意思,它不一定在实际生活中起到了立竿见影的作用,而是所有在非数学领域中体现了数学之美的例子都可以叫做数学应用,或者有趣的数学。所以,在经历了一两周纯粹地研究数学之后,我感觉我不能再这样下去了,与其零散地涉猎各个方面的知识,倒不如现在开始就系统地学习一些学科以外的科学知识。于是,我决定重拾高中还没有完成的事情——学习相对论和量子力学——所谓现代物理的两大支柱。

点击阅读全文...