14 Dec

Mitchell近似:乘法变为加法,误差不超过1/9

今天给大家介绍一篇1962年的论文《Computer Multiplication and Division Using Binary Logarithms》,作者是John N. Mitchell,他在里边提出了一个相当有意思的算法:在二进制下,可以完全通过加法来近似完成两个数的相乘,最大误差不超过1/9。整个算法相当巧妙,更有意思的是它还有着非常简洁的编程实现,让人拍案叫绝。然而,笔者发现网上居然找不到介绍这个算法的网页,所以在此介绍一番。

你以为这只是过时的玩意?那你就错了,前不久才有人利用它发了一篇NeurIPS 2020呢!所以,确定不来了解一下吗?

点击阅读全文...

10 May

Transformer升级之路:4、二维位置的旋转式位置编码

在之前的文章《Transformer升级之路:2、博采众长的旋转式位置编码》中我们提出了旋转式位置编码RoPE以及对应的Transformer模型RoFormer。由于笔者主要研究的领域还是NLP,所以本来这个事情对于笔者来说已经完了。但是最近一段时间,Transformer模型在视觉领域也大火,各种Vision Transformer(ViT)层出不穷,于是就有了问题:二维情形的RoPE应该是怎样的呢?

咋看上去,这个似乎应该只是一维情形的简单推广,但其中涉及到的推导和理解却远比我们想象中复杂,本文就对此做一个分析,从而深化我们对RoPE的理解。

二维RoPE

什么是二维位置?对应的二维RoPE又是怎样的?它的难度在哪里?在这一节中,我们先简单介绍二维位置,然后直接给出二维RoPE的结果和推导思路,在随后的几节中,我们再详细给出推导过程。

点击阅读全文...

2 Jun

我们可以无损放大一个Transformer模型吗(一)

看了标题,可能读者会有疑惑,大家不都想着将大模型缩小吗?怎么你想着将小模型放大了?其实背景是这样的:通常来说更大的模型加更多的数据确实能起得更好的效果,然而算力有限的情况下,从零预训练一个大的模型时间成本太大了,如果还要调试几次参数,那么可能几个月就过去了。

这时候“穷人思维”就冒出来了(土豪可以无视):能否先训练一个同样层数的小模型,然后放大后继续训练?这样一来,预训练后的小模型权重经过放大后,就是大模型一个起点很高的初始化权重,那么大模型阶段的训练步数就可以减少了,从而缩短整体的训练时间。

那么,小模型可以无损地放大为一个大模型吗?本文就来从理论上分析这个问题。

含义

有的读者可能想到:这肯定可以呀,大模型的拟合能力肯定大于小模型呀。的确,从拟合能力角度来看,这件事肯定是可以办到的,但这还不是本文关心的“无损放大”的全部。

点击阅读全文...

15 Nov

WGAN新方案:通过梯度归一化来实现L约束

当前,WGAN主流的实现方式包括参数裁剪(Weight Clipping)、谱归一化(Spectral Normalization)、梯度惩罚(Gradient Penalty),本来则来介绍一种新的实现方案:梯度归一化(Gradient Normalization),该方案出自两篇有意思的论文,分别是《Gradient Normalization for Generative Adversarial Networks》《GraN-GAN: Piecewise Gradient Normalization for Generative Adversarial Networks》

有意思在什么地方呢?从标题可以看到,这两篇论文应该是高度重合的,甚至应该是同一作者的。但事实上,这是两篇不同团队的、大致是同一时期的论文,一篇中了ICCV,一篇中了WACV,它们基于同样的假设推出了几乎一样的解决方案,内容重合度之高让我一直以为是同一篇论文。果然是巧合无处不在啊~

点击阅读全文...

25 May

从重参数的角度看离散概率分布的构建

一般来说,神经网络的输出都是无约束的,也就是值域为$\mathbb{R}$,而为了得到有约束的输出,通常是采用加激活函数的方式。例如,如果我们想要输出一个概率分布来代表每个类别的概率,那么通常在最后加上Softmax作为激活函数。那么一个紧接着的疑问就是:除了Softmax,还有什么别的操作能生成一个概率分布吗?

《漫谈重参数:从正态分布到Gumbel Softmax》中,我们介绍了Softmax的重参数操作,本文将这个过程反过来,即先定义重参数操作,然后去反推对应的概率分布,从而得到一个理解概率分布构建的新视角。

问题定义

假设模型的输出向量为$\boldsymbol{\mu}=[\mu_1,\cdots,\mu_n]\in\mathbb{R}^n$,不失一般性,这里假设$\mu_i$两两不等。我们希望通过某个变换$\mathcal{T}$将$\boldsymbol{\mu}$转换为$n$元概率分布$\boldsymbol{p}=[p_1,\cdots,p_n]$,并保持一定的性质。比如,最基本的要求是:
\begin{equation}{\color{red}1.}\,p_i\geq 0 \qquad {\color{red}2.}\,\sum_i p_i = 1 \qquad {\color{red}3.}\,p_i \geq p_j \Leftrightarrow \mu_i \geq \mu_j\end{equation}

点击阅读全文...

3 Aug

生成扩散模型漫谈(五):一般框架之SDE篇

在写生成扩散模型的第一篇文章时,就有读者在评论区推荐了宋飏博士的论文《Score-Based Generative Modeling through Stochastic Differential Equations》,可以说该论文构建了一个相当一般化的生成扩散模型理论框架,将DDPM、SDE、ODE等诸多结果联系了起来。诚然,这是一篇好论文,但并不是一篇适合初学者的论文,里边直接用到了随机微分方程(SDE)、Fokker-Planck方程、得分匹配等大量结果,上手难度还是颇大的。

不过,在经过了前四篇文章的积累后,现在我们可以尝试去学习一下这篇论文了。在接下来的文章中,笔者将尝试从尽可能少的理论基础出发,尽量复现原论文中的推导结果。

随机微分

在DDPM中,扩散过程被划分为了固定的$T$步,还是用《生成扩散模型漫谈(一):DDPM = 拆楼 + 建楼》的类比来说,就是“拆楼”和“建楼”都被事先划分为了$T$步,这个划分有着相当大的人为性。事实上,真实的“拆”、“建”过程应该是没有刻意划分的步骤的,我们可以将它们理解为一个在时间上连续的变换过程,可以用随机微分方程(Stochastic Differential Equation,SDE)来描述。

点击阅读全文...

22 Nov

基于Amos优化器思想推导出来的一些“炼丹策略”

如果将训练模型比喻为“炼丹”,那么“炼丹炉”显然就是优化器了。据传AdamW优化器是当前训练神经网络最快的方案,这一点笔者也没有一一对比过,具体情况如何不得而知,不过目前做预训练时多数都用AdamW或其变种LAMB倒是真的。然而,正如有了炼丹炉也未必能炼出好丹,即便我们确定了选择AdamW优化器,依然有很多问题还没有确定的答案,比如:

1、学习率如何适应不同初始化和参数化?

2、权重衰减率该怎么调?

3、学习率应该用什么变化策略?

4、能不能降低优化器的显存占用?

尽管在实际应用时,我们大多数情况下都可以直接套用前人已经调好的参数和策略,但缺乏比较系统的调参指引,始终会让我们在“炼丹”之时感觉没有底气。在这篇文章中,我们基于Google最近提出的Amos优化器的思路,给出一些参考结果。

点击阅读全文...

28 Sep

生成扩散模型漫谈(十二):“硬刚”扩散ODE

《生成扩散模型漫谈(五):一般框架之SDE篇》中,我们从SDE的角度理解了生成扩散模型,然后在《生成扩散模型漫谈(六):一般框架之ODE篇》中,我们知道SDE对应的扩散模型中,实际上隐含了一个ODE模型。无独有偶,在《生成扩散模型漫谈(四):DDIM = 高观点DDPM》中我们也知道原本随机采样的DDPM模型中,也隐含了一个确定性的采样过程DDIM,它的连续极限也是一个ODE。

细想上述过程,可以发现不管是“DDPM→DDIM”还是“SDE→ODE”,都是从随机采样模型过渡到确定性模型,而如果我们一开始的目标就是ODE,那么该过程未免显得有点“迂回”了。在本文中,笔者尝试给出ODE扩散模型的直接推导,并揭示了它与雅可比行列式、热传导方程等内容的联系。

微分方程

像GAN这样的生成模型,它本质上是希望找到一个确定性变换,能将从简单分布(如标准正态分布)采样出来的随机变量,变换为特定数据分布的样本。flow模型也是生成模型之一,它的思路是反过来,先找到一个能将数据分布变换简单分布的可逆变换,再求解相应的逆变换来得到一个生成模型。

点击阅读全文...