8 Oct

预训练一下,Transformer的长序列成绩还能涨不少!

作为LLM的主流模型架构,Transformer在各类任务上的总体表现都出色,大多数情况下,Transformer的槽点只是它的平方复杂度,而不是效果——除了一个名为Long Range Arena(下面简称LRA)的Benchmark。一直以来,LRA一直是线性RNN类模型的“主场”,与之相比Transformer在上面有明显的差距,以至于让人怀疑这是否就是Transformer的固有缺陷。

不过,近日论文《Never Train from Scratch: Fair Comparison of Long-Sequence Models Requires Data-Driven Priors》将这“缺失的一环”给补齐了。论文指出,缺乏预训练是Transformer在LRA上效果较差的主要原因,而所有架构都可以通过预训练获得一定的提升,Transformer的提升则更为明显。

旧背景

Long Range Arena(LRA)是长序列建模的一个Benchmark,提出自论文《Long Range Arena: A Benchmark for Efficient Transformers》,从论文标题就可以看出,LRA是为了测试各种Efficient版的Transformer而构建的,里边包含了多种类型的数据,序列长度从1k到16k不等,此前不少Efficient Transformer的工作也都在LRA进行了测试。虽然在代表性方面有些争议,但LRA依然不失为一个测试Efficient Transformer的长序列能力的经典Benchmark。

点击阅读全文...

13 Oct

EMO:基于最优传输思想设计的分类损失函数

众所周知,分类任务的标准损失是交叉熵(Cross Entropy,等价于最大似然MLE,即Maximum Likelihood Estimation),它有着简单高效的特点,但在某些场景下也暴露出一些问题,如偏离评价指标、过度自信等,相应的改进工作也有很多,此前我们也介绍过一些,比如《再谈类别不平衡问题:调节权重与魔改Loss的对比联系》《如何训练你的准确率?》《缓解交叉熵过度自信的一个简明方案》等。由于LLM的训练也可以理解为逐token的分类任务,默认损失也是交叉熵,因此这些改进工作在LLM流行的今天依然有一定的价值。

在这篇文章中,我们介绍一篇名为《EMO: Earth Mover Distance Optimization for Auto-Regressive Language Modeling》的工作,它基于最优传输思想提出了新的改进损失函数EMO,声称能大幅提高LLM的微调效果。其中细节如何?让我们一探究竟。

点击阅读全文...

22 Oct

从梯度最大化看Attention的Scale操作

我们知道,Scaled Dot-Product Attention的Scale因子是$\frac{1}{\sqrt{d}}$,其中$d$是$\boldsymbol{q},\boldsymbol{k}$的维度。这个Scale因子的一般解释是:如果不除以$\sqrt{d}$,那么初始的Attention就会很接近one hot分布,这会造成梯度消失,导致模型训练不起来。然而,可以证明的是,当Scale等于0时同样也会有梯度消失问题,这也就是说Scale太大太小都不行。

那么多大的Scale才适合呢?$\frac{1}{\sqrt{d}}$是最佳的Scale了吗?本文试图从梯度角度来回答这个问题。

已有结果

《浅谈Transformer的初始化、参数化与标准化》中,我们已经推导过标准的Scale因子$\frac{1}{\sqrt{d}}$,推导的思路很简单,假设初始阶段$\boldsymbol{q},\boldsymbol{k}\in\mathbb{R}^d$都采样自“均值为0、方差为1”的分布,那么可以算得
\begin{equation}\mathbb{V}ar[\boldsymbol{q}\cdot\boldsymbol{k}] = d\end{equation}

点击阅读全文...

9 Nov

VQ一下Key,Transformer的复杂度就变成线性了

Efficient Transformer,泛指一切致力于降低Transformer的二次复杂度的工作,开始特指针对Attention的改进,后来更一般的思路,如傅里叶变换、线性RNN等,也被归入这个范畴。不得不说,为了降低Transformer的二次复杂度,各路大牛可谓是“八仙过海,各显神通”,各种神奇的思路“百花齐放”,笔者也从中学习到了不少理论知识。然而,尽管Efficient Transformer在理论上是精彩的,但实际上该领域一直都是不愠不火的状态,并没有实际表现十分出色的模型,在LLM火爆的今天,甚至已经逐渐淡出了大家的视野,也淡出了笔者的兴趣范围。

不过,最近有一篇论文《Transformer-VQ: Linear-Time Transformers via Vector Quantization》,却让笔者为之拍案叫绝。作者非常高明地洞察到,只需要对标准Attention的Key做一下VQ(Vector Quantize),复杂度就会自动降低为线性!这种线性化思路保留了标准Attention的形式,是标准Attention到线性Attention的一个完美过渡,同时最大程度上保留了标准Attention的能力。

高效难题

说起来,本站也算是比较早关注Efficient Transformer相关工作了,最早可以追溯到2019年解读Sparse Transformer的一篇博客《为节约而生:从标准Attention到稀疏Attention》。此后,陆续写的关于Efficient Transformer的其他博文还有

点击阅读全文...

31 Oct

简单得令人尴尬的FSQ:“四舍五入”超越了VQ-VAE

正如“XXX is all you need”一样,有不少论文都以“简单得令人尴尬”命名(An Embarrassingly Simple XXX),但在笔者看来,这些论文大多数都是噱头多于实力。不过,笔者最近阅读到的一篇论文,真的让人不由得发出“简单得令人尴尬”的感叹~

论文的标题是《Finite Scalar Quantization: VQ-VAE Made Simple》,顾名思义,这是一篇旨在用FSQ(Finite Scalar Quantization)简化VQ-VAE的工作。随着生成模型、多模态LLM的逐渐流行,VQ-VAE及其后续工作也作为“图像的Tokenizer”而“水涨船高”。然而,VQ-VAE的训练本身也存在一些问题,而FSQ这篇论文则声称通过更简单的“四舍五入”就可以达到同样的目的,并且有着效果更好、收敛更快、训练更稳的优点。

FSQ真有这么神奇?接下来我们一起学习一下。

VQ

首先,我们来了解一下“VQ”。VQ全称是“Vector Quantize”,可以翻译为“向量量子化”或者“向量量化”,是指将无限、连续的编码向量映射为有限、离散的整数数字的一种技术。如果我们将VQ应用在自编码器的中间层,那么可以在压缩输入大小的同时,让编码结果成为一个离散的整数序列。

点击阅读全文...

12 Dec

注意力机制真的可以“集中注意力”吗?

之前在《Transformer升级之路:3、从Performer到线性Attention》《为什么现在的LLM都是Decoder-only的架构?》等文章中,我们从Attention矩阵的“秩”的角度探讨了Attention机制,并曾经判断线性Attention不如标准Attention的关键原因正是“低秩瓶颈”。然而,这一解释对于双向的Encoder模型或许成立,但却难以适用于单向的Decoder模型,因为Decoder的Attention矩阵的上三角部分是被mask掉的,留下的下三角矩阵必然是满秩的,而既然都是满秩了,那么低秩瓶颈问题似乎就不复存在了。

所以,“低秩瓶颈”并不能完全解释线性Attention的能力缺陷。在这篇文章中,笔者试图寻求另一个角度的解释。简单来说,与标准Attention相比,线性Attention更难“集中注意力”,从而难以准确地定位到关键token,这大概是它效果稍逊一筹的主要原因。

点击阅读全文...

1 Jan

新年快乐!记录一下 Cool Papers 的开发体验

上周在《写了个刷论文的辅助网站:Cool Papers》中,笔者分享了一个自己开发的刷论文网站Cool Papers,并得到了一些用户的认可。然而,“使用的人越多,暴露的问题就越多”,当用户量上来后,才感觉到之前写的代码是多么不严谨,于是过去一整周都在不停地修Bug之中,直到今天下午还发现了一个Bug在修。这篇文章简单总结一下笔者在开发和修Bug过程中的感想。

Cool Papers:https://papers.cool

技术

事实上,“papers.cool”这个域名已经注册了四年多,从这可以看出笔者其实很早以前就计划着做类似Cool Papers的网站,也做过一些雏形,但之所以这个网站在四年后才正式诞生,根本原因就只有一个:技术不行。

点击阅读全文...

14 Jan

旁门左道之如何让Python的重试代码更加优雅

这篇文章我们讨论一个编程题:如何更优雅地在Python中实现重试。

在文章《新年快乐!记录一下 Cool Papers 的开发体验》中,笔者分享了开发Cool Papers的一些经验,其中就提到了Cool Papers所需要的一些网络通信步骤。但凡涉及到网络通信,就有失败的风险(谁也无法保证网络不会间歇性抽风),所以重试是网络通信的基本操作。此外,当涉及到多进程、数据库、硬件交互等操作时,通常也需要引入重试机制。

在Python中,实现重试并不难,但如何更加简单而又不失可读性地实现重试,还是有一定技巧的。接下来笔者分享一下自己的尝试。

循环重试

完整的重试流程大致上包含循环重试、异常处理、延时等待、后续操作等部分,其标准写法就是用for循环,用“try ... except ...”来捕捉异常,一个参考代码是:

点击阅读全文...