当BERT-whitening引入超参数:总有一款适合你
By 苏剑林 | 2022-05-18 | 37591位读者 | 引用在《你可能不需要BERT-flow:一个线性变换媲美BERT-flow》中,笔者提出了BERT-whitening,验证了一个线性变换就能媲美当时的SOTA方法BERT-flow。此外,BERT-whitening还可以对句向量进行降维,带来更低的内存占用和更快的检索速度。然而,在《无监督语义相似度哪家强?我们做了个比较全面的评测》中我们也发现,whitening操作并非总能带来提升,有些模型本身就很贴合任务(如经过有监督训练的SimBERT),那么额外的whitening操作往往会降低效果。
为了弥补这个不足,本文提出往BERT-whitening中引入了两个超参数,通过调节这两个超参数,我们几乎可以总是获得“降维不掉点”的结果。换句话说,即便是原来加上whitening后效果会下降的任务,如今也有机会在降维的同时获得相近甚至更好的效果了。
方法概要
目前BERT-whitening的流程是:
\begin{equation}\begin{aligned}
\tilde{\boldsymbol{x}}_i =&\, (\boldsymbol{x}_i - \boldsymbol{\mu})\boldsymbol{U}\boldsymbol{\Lambda}^{-1/2} \\
\boldsymbol{\mu} =&\, \frac{1}{N}\sum\limits_{i=1}^N \boldsymbol{x}_i \\
\boldsymbol{\Sigma} =&\, \frac{1}{N}\sum\limits_{i=1}^N (\boldsymbol{x}_i - \boldsymbol{\mu})^{\top}(\boldsymbol{x}_i - \boldsymbol{\mu}) = \boldsymbol{U}\boldsymbol{\Lambda}\boldsymbol{U}^{\top} \,\,(\text{SVD分解})
\end{aligned}\end{equation}
从重参数的角度看离散概率分布的构建
By 苏剑林 | 2022-05-25 | 15827位读者 | 引用一般来说,神经网络的输出都是无约束的,也就是值域为$\mathbb{R}$,而为了得到有约束的输出,通常是采用加激活函数的方式。例如,如果我们想要输出一个概率分布来代表每个类别的概率,那么通常在最后加上Softmax作为激活函数。那么一个紧接着的疑问就是:除了Softmax,还有什么别的操作能生成一个概率分布吗?
在《漫谈重参数:从正态分布到Gumbel Softmax》中,我们介绍了Softmax的重参数操作,本文将这个过程反过来,即先定义重参数操作,然后去反推对应的概率分布,从而得到一个理解概率分布构建的新视角。
问题定义
假设模型的输出向量为$\boldsymbol{\mu}=[\mu_1,\cdots,\mu_n]\in\mathbb{R}^n$,不失一般性,这里假设$\mu_i$两两不等。我们希望通过某个变换$\mathcal{T}$将$\boldsymbol{\mu}$转换为$n$元概率分布$\boldsymbol{p}=[p_1,\cdots,p_n]$,并保持一定的性质。比如,最基本的要求是:
\begin{equation}{\color{red}1.}\,p_i\geq 0 \qquad {\color{red}2.}\,\sum_i p_i = 1 \qquad {\color{red}3.}\,p_i \geq p_j \Leftrightarrow \mu_i \geq \mu_j\end{equation}
如何训练你的准确率?
By 苏剑林 | 2022-06-01 | 26079位读者 | 引用最近Arxiv上的一篇论文《EXACT: How to Train Your Accuracy》引起了笔者的兴趣,顾名思义这是介绍如何直接以准确率为训练目标来训练模型的。正好笔者之前也对此有过一些分析,如《函数光滑化杂谈:不可导函数的可导逼近》、《再谈类别不平衡问题:调节权重与魔改Loss的对比联系》等, 所以带着之前的研究经验很快完成了论文的阅读,写下了这篇总结,并附上了最近关于这个主题的一些新思考。
失实的例子
论文开头指出,我们平时用的分类损失函数是交叉熵或者像SVM中的Hinge Loss,这两个损失均不能很好地拟合最终的评价指标准确率。为了说明这一点,论文举了一个很简单的例子:假设数据只有$\{(-0.25,-1),(0,-1),(0.25,,1)\}$三个点,$-1$和$1$分别代表负类和正类,待拟合模型是$f(x)=x-b$,$b$是参数,我们希望通过$\text{sign}(f(x))$来预测类别。如果用“sigmoid + 交叉熵”,那么损失函数就是$-\log \frac{1}{1+e^{-l \cdot f(x)}}$,$(x,l)$代表一对标签数据;如果用Hinge Loss,则是$\max(0, 1 - l\cdot f(x))$。
相对位置编码Transformer的一个理论缺陷与对策
By 苏剑林 | 2022-06-07 | 91798位读者 | 引用位置编码是Transformer中很重要的一环,在《让研究人员绞尽脑汁的Transformer位置编码》中我们就总结了一些常见的位置编码设计。大体上,我们将Transformer的位置编码分为“绝对位置编码”和“相对位置编码”两类,其中“相对位置编码”在众多NLP/CV的实验表现相对来说更加好些。
然而,我们可以发现,目前相对位置编码几乎都是在Softmax之前的Attention矩阵上进行操作的,这种施加方式实际上都存在一个理论上的缺陷,使得Transformer无法成为“万能拟合器”。本文就来分析这个问题,并探讨一些解决方案。
简单探针
顾名思义,位置编码就是用来给模型补充上位置信息的。那么,如何判断一个模型有没有足够的识别位置的能力呢?笔者之前曾构思过一个简单的探针实验:
对于一个有识别位置能力的模型,应该有能力准确实现如下映射 \begin{equation}\begin{array}{lc} \text{输入:} & [0, 0, \cdots, 0, 0] \\ & \downarrow\\ \text{输出:} & [1, 2, \cdots, n-1, n] \end{array}\end{equation}
生成扩散模型漫谈(三):DDPM = 贝叶斯 + 去噪
By 苏剑林 | 2022-07-19 | 131589位读者 | 引用到目前为止,笔者给出了生成扩散模型DDPM的两种推导,分别是《生成扩散模型漫谈(一):DDPM = 拆楼 + 建楼》中的通俗类比方案和《生成扩散模型漫谈(二):DDPM = 自回归式VAE》中的变分自编码器方案。两种方案可谓各有特点,前者更为直白易懂,但无法做更多的理论延伸和定量理解,后者理论分析上更加完备一些,但稍显形式化,启发性不足。
在这篇文章中,我们再分享DDPM的一种推导,它主要利用到了贝叶斯定理来简化计算,整个过程的“推敲”味道颇浓,很有启发性。不仅如此,它还跟我们后面将要介绍的DDIM模型有着紧密的联系。
生成扩散模型漫谈(二):DDPM = 自回归式VAE
By 苏剑林 | 2022-07-06 | 122408位读者 | 引用在文章《生成扩散模型漫谈(一):DDPM = 拆楼 + 建楼》中,我们为生成扩散模型DDPM构建了“拆楼-建楼”的通俗类比,并且借助该类比完整地推导了生成扩散模型DDPM的理论形式。在该文章中,我们还指出DDPM本质上已经不是传统的扩散模型了,它更多的是一个变分自编码器VAE,实际上DDPM的原论文中也是将它按照VAE的思路进行推导的。
所以,本文就从VAE的角度来重新介绍一版DDPM,同时分享一下自己的Keras实现代码和实践经验。
Github地址:https://github.com/bojone/Keras-DDPM
多步突破
在传统的VAE中,编码过程和生成过程都是一步到位的:
\begin{equation}\text{编码:}\,\,x\to z\,,\quad \text{生成:}\,\,z\to x\end{equation}
生成扩散模型漫谈(五):一般框架之SDE篇
By 苏剑林 | 2022-08-03 | 178824位读者 | 引用在写生成扩散模型的第一篇文章时,就有读者在评论区推荐了宋飏博士的论文《Score-Based Generative Modeling through Stochastic Differential Equations》,可以说该论文构建了一个相当一般化的生成扩散模型理论框架,将DDPM、SDE、ODE等诸多结果联系了起来。诚然,这是一篇好论文,但并不是一篇适合初学者的论文,里边直接用到了随机微分方程(SDE)、Fokker-Planck方程、得分匹配等大量结果,上手难度还是颇大的。
不过,在经过了前四篇文章的积累后,现在我们可以尝试去学习一下这篇论文了。在接下来的文章中,笔者将尝试从尽可能少的理论基础出发,尽量复现原论文中的推导结果。
随机微分
在DDPM中,扩散过程被划分为了固定的$T$步,还是用《生成扩散模型漫谈(一):DDPM = 拆楼 + 建楼》的类比来说,就是“拆楼”和“建楼”都被事先划分为了$T$步,这个划分有着相当大的人为性。事实上,真实的“拆”、“建”过程应该是没有刻意划分的步骤的,我们可以将它们理解为一个在时间上连续的变换过程,可以用随机微分方程(Stochastic Differential Equation,SDE)来描述。
生成扩散模型漫谈(九):条件控制生成结果
By 苏剑林 | 2022-08-30 | 132613位读者 | 引用前面的几篇文章都是比较偏理论的结果,这篇文章我们来讨论一个比较有实用价值的主题——条件控制生成。
作为生成模型,扩散模型跟VAE、GAN、flow等模型的发展史很相似,都是先出来了无条件生成,然后有条件生成就紧接而来。无条件生成往往是为了探索效果上限,而有条件生成则更多是应用层面的内容,因为它可以实现根据我们的意愿来控制输出结果。从DDPM至今,已经出来了很多条件扩散模型的工作,甚至可以说真正带火了扩散模型的就是条件扩散模型,比如脍炙人口的文生图模型DALL·E 2、Imagen。
在这篇文章中,我们对条件扩散模型的理论基础做个简单的学习和总结。
技术分析
从方法上来看,条件控制生成的方式分两种:事后修改(Classifier-Guidance)和事前训练(Classifier-Free)。
最近评论