31 May

关于NBCE方法的一些补充说明和分析

上周在《NBCE:使用朴素贝叶斯扩展LLM的Context处理长度》中,我们介绍了一种基于朴素贝叶斯来扩展LLM的Context长度的方案NBCE(Naive Bayes-based Context Extension)。由于它有着即插即用、模型无关、不用微调等优点,也获得了一些读者的认可,总的来说目前大家反馈的测试效果还算可以。

当然,部分读者在使用的时候也提出了一些问题。本文就结合读者的疑问和笔者的后续思考,对NBCE方法做一些补充说明和分析。

方法回顾

假设$T$为要生成的token序列,$S_1,S_2,\cdots,S_n$是给定的若干个Context,我们需要根据$S_1,S_2,\cdots,S_n$生成$T$,那么就需要估计$p(T|S_1, S_2,\cdots,S_n)$。根据朴素贝叶斯思想,我们得到
\begin{equation}\log p(T|S_1, S_2,\cdots,S_n) = \color{red}{(\beta + 1)\overline{\log p(T|S)}} - \color{green}{\beta\log p(T)} + \color{skyblue}{\text{常数}}\label{eq:nbce-2}\end{equation}

点击阅读全文...

28 Mar

Google新作试图“复活”RNN:RNN能否再次辉煌?

当前,像ChatGPT之类的LLM可谓是“风靡全球”。有读者留意到,几乎所有LLM都还是用最初的Multi-Head Scaled-Dot Attention,近年来大量的Efficient工作如线性AttentionFLASH等均未被采用。是它们版本效果太差,还是根本没有必要考虑效率?其实答案笔者在《线性Transformer应该不是你要等的那个模型》已经分析过了,只有序列长度明显超过hidden size时,标准Attention才呈现出二次复杂度,在此之前它还是接近线性的,它的速度比很多Efficient改进都快,而像GPT3用到了上万的hidden size,这意味着只要你的LLM不是面向数万长度的文本生成,那么用Efficient改进是没有必要的,很多时候速度没提上去,效果还降低了。

那么,真有数万甚至数十万长度的序列处理需求时,我们又该用什么模型呢?近日,Google的一篇论文《Resurrecting Recurrent Neural Networks for Long Sequences》重新优化了RNN模型,特别指出了RNN在处理超长序列场景下的优势。那么,RNN能否再次辉煌?

点击阅读全文...

3 Apr

Bias项的神奇作用:RoPE + Bias = 更好的长度外推性

万万没想到,Bias项能跟Transformer的长度外推性联系在一起!

长度外推性是我们希望Transformer具有的一个理想性质,笔者曾在《Transformer升级之路:7、长度外推性与局部注意力》《Transformer升级之路:8、长度外推性与位置鲁棒性》系统地介绍过这一问题。至于Bias项(偏置项),目前的主流观点是当模型足够大时,Bias项不会有什么特别的作用,所以很多模型选择去掉Bias项,其中代表是Google的T5PaLM,我们后面做的RoFormerV2GAU-α也沿用了这个做法。

那么,这两个看上去“风牛马不相及”的东西,究竟是怎么联系起来的呢?Bias项真的可以增强Transformer的长度外推性?且听笔者慢慢道来。

点击阅读全文...

31 Jan

幂等生成网络IGN:试图将判别和生成合二为一的GAN

前段时间,一个名为“幂等生成网络(Idempotent Generative Network,IGN)”的生成模型引起了一定的关注。它自称是一种独立于已有的VAE、GAN、flow、Diffusion之外的新型生成模型,并且具有单步采样的特点。也许是大家苦于当前主流的扩散模型的多步采样生成过程久矣,因此任何声称可以实现单步采样的“风吹草动”都很容易吸引人们的关注。此外,IGN名称中的“幂等”一词也增加了它的神秘感,进一步扩大了人们的期待,也成功引起了笔者的兴趣,只不过之前一直有别的事情要忙,所以没来得及认真阅读模型细节。

最近闲了一点,想起来还有个IGN没读,于是重新把论文翻了出来,但阅读之后却颇感困惑:这哪里是个新模型,不就是个GAN的变种吗?跟常规GAN不同的是,它将生成器和判别器合二为一了。那这个“合二为一”是不是有什么特别的好处,比如训练更稳定?个人又感觉没有。下面将分享笔者从GAN角度理解IGN的过程和疑问。

生成对抗

关于GAN(Generative Adversarial Network,生成对抗网络),笔者前几年系统地学习过一段时间(查看GAN标签可以查看到相关文章),但近几年没有持续地关注了,因此这里先对GAN做个简单的回顾,也方便后续章节中我们对比GAN与IGN之间的异同。

点击阅读全文...

20 Jun

重温SSM(三):HiPPO的高效计算(S4)

前面我们用两篇文章《重温SSM(一):线性系统和HiPPO矩阵》《重温SSM(二):HiPPO的一些遗留问题》介绍了HiPPO的思想和推导——通过正交函数基对持续更新的函数进行实时逼近,其拟合系数的动力学正好可以表示为一个线性ODE系统,并且对于特定的基底以及逼近方式,我们可以将线性系统的关键矩阵精确地算出来。此外,我们还讨论了HiPPO的离散化和相关性质等问题,这些内容奠定了后续的SSM工作的理论基础。

接下来,我们将介绍HiPPO的后续应用篇《Efficiently Modeling Long Sequences with Structured State Spaces》(简称S4),它利用HiPPO的推导结果作为序列建模的基本工具,并从新的视角探讨了高效的计算和训练方式,最后在不少长序列建模任务上验证了它的有效性,可谓SSM乃至RNN复兴的代表作之一。

基本框架

S4使用的序列建模框架,是如下的线性ODE系统:
\begin{equation}\begin{aligned}
x'(t) =&\, A x(t) + B u(t) \\
y(t) =&\, C^* x(t) + D u(t)
\end{aligned}\end{equation}

点击阅读全文...

24 Jul

Monarch矩阵:计算高效的稀疏型矩阵分解

在矩阵压缩这个问题上,我们通常有两个策略可以选择,分别是低秩化稀疏化。低秩化通过寻找矩阵的低秩近似来减少矩阵尺寸,而稀疏化则是通过减少矩阵中的非零元素来降低矩阵的复杂性。如果说SVD是奔着矩阵的低秩近似去的,那么相应地寻找矩阵稀疏近似的算法又是什么呢?

接下来我们要学习的是论文《Monarch: Expressive Structured Matrices for Efficient and Accurate Training》,它为上述问题给出了一个答案——“Monarch矩阵”,这是一簇能够分解为若干置换矩阵与稀疏矩阵乘积的矩阵,同时具备计算高效且表达能力强的特点,论文还讨论了如何求一般矩阵的Monarch近似,以及利用Monarch矩阵参数化LLM来提高LLM速度等内容。

Monarch矩阵形式M=PLPR

Monarch矩阵形式M=PLPR

值得指出的是,该论文的作者也正是著名的Flash Attention的作者Tri Dao,其工作几乎都在致力于改进LLM的性能,这篇Monarch也是他主页上特意展示的几篇论文之一,单从这一点看就非常值得学习一番。

点击阅读全文...

11 Oct

低秩近似之路(三):CR

《低秩近似之路(二):SVD》中,我们证明了SVD可以给出任意矩阵的最优低秩近似。那里的最优近似是无约束的,也就是说SVD给出的结果只管误差上的最小,不在乎矩阵的具体结构,而在很多应用场景中,出于可解释性或者非线性处理等需求,我们往往希望得到具有某些特殊结构的近似分解。

因此,从这篇文章开始,我们将探究一些具有特定结构的低秩近似,而本文将聚焦于其中的CR近似(Column-Row Approximation),它提供了加速矩阵乘法运算的一种简单方案。

问题背景

矩阵的最优$r$秩近似的一般提法是
\begin{equation}\mathop{\text{argmin}}_{\text{rank}(\tilde{\boldsymbol{M}})\leq r}\Vert \tilde{\boldsymbol{M}} - \boldsymbol{M}\Vert_F^2\label{eq:loss-m2}\end{equation}

点击阅读全文...

30 Oct

低秩近似之路(四):ID

这篇文章的主角是ID(Interpolative Decomposition),中文可以称之为“插值分解”,它同样可以理解为是一种具有特定结构的低秩分解,其中的一侧是该矩阵的若干列(当然如果你偏好于行,那么选择行也没什么问题),换句话说,ID试图从一个矩阵中找出若干关键列作为“骨架”(通常也称作“草图”)来逼近原始矩阵。

可能很多读者都未曾听说过ID,即便维基百科也只有几句语焉不详的介绍(链接),但事实上,ID跟SVD一样早已内置在SciPy之中(参考scipy.linalg.interpolative),这侧面印证了ID的实用价值。

基本定义

前三篇文章我们分别介绍了伪逆SVDCR近似,它们都可以视为寻找特定结构的低秩近似:
\begin{equation}\mathop{\text{argmin}}_{\text{rank}(\tilde{\boldsymbol{M}})\leq r}\Vert \tilde{\boldsymbol{M}} - \boldsymbol{M}\Vert_F^2\end{equation}

点击阅读全文...