学会提问的BERT:端到端地从篇章中构建问答对
By 苏剑林 | 2020-07-25 | 109751位读者 | 引用机器阅读理解任务,相比不少读者都有所了解了,简单来说就是从给定篇章中寻找给定问题的答案,即“篇章 + 问题 → 答案”这样的流程,笔者之前也写过一些关于阅读理解的文章,比如《基于CNN的阅读理解式问答模型:DGCNN》等。至于问答对构建,则相当于是阅读理解的反任务,即“篇章 → 答案 + 问题”的流程,学术上一般直接叫“问题生成(Question Generation)”,因为大多数情况下,答案可以通过比较规则的随机选择,所以很多文章都只关心“篇章 + 答案 → 问题”这一步。
本文将带来一次全端到端的“篇章 → 答案 + 问题”实践,包括模型介绍以及基于bert4keras的实现代码,欢迎读者尝试。
修改Transformer结构,设计一个更快更好的MLM模型
By 苏剑林 | 2020-08-07 | 52338位读者 | 引用大家都知道,MLM(Masked Language Model)是BERT、RoBERTa的预训练方式,顾名思义,就是mask掉原始序列的一些token,然后让模型去预测这些被mask掉的token。随着研究的深入,大家发现MLM不单单可以作为预训练方式,还能有很丰富的应用价值,比如笔者之前就发现直接加载BERT的MLM权重就可以当作UniLM来做Seq2Seq任务(参考这里),又比如发表在ACL 2020的《Spelling Error Correction with Soft-Masked BERT》将MLM模型用于文本纠错。
然而,仔细读过BERT的论文或者亲自尝试过的读者应该都知道,原始的MLM的训练效率是比较低的,因为每次只能mask掉一小部分的token来训练。ACL 2020的论文《Fast and Accurate Deep Bidirectional Language Representations for Unsupervised Learning》也思考了这个问题,并且提出了一种新的MLM模型设计,能够有更高的训练效率和更好的效果。
L2正则没有想象那么好?可能是“权重尺度偏移”惹的祸
By 苏剑林 | 2020-08-14 | 35187位读者 | 引用L2正则是机器学习常用的一种防止过拟合的方法(应该也是一道经常遇到的面试题)。简单来说,它就是希望权重的模长尽可能小一点,从而能抵御的扰动多一点,最终提高模型的泛化性能。但是读者可能也会发现,L2正则的表现通常没有理论上说的那么好,很多时候加了可能还有负作用。最近的一篇文章《Improve Generalization and Robustness of Neural Networks via Weight Scale Shifting Invariant Regularizations》从“权重尺度偏移”这个角度分析了L2正则的弊端,并提出了新的WEISSI正则项。整个分析过程颇有意思,在这里与大家分享一下。
相关内容
这一节中我们先简单回顾一下L2正则,然后介绍它与权重衰减的联系以及与之相关的AdamW优化器。
L2正则的理解
为什么要添加L2正则?这个问题可能有多个答案。有从Ridge回归角度回答的,有从贝叶斯推断角度回答的,这里给出从扰动敏感性的角度的理解。
最小熵原理(六):词向量的维度应该怎么选择?
By 苏剑林 | 2020-08-20 | 98173位读者 | 引用随着NLP的发展,像Word2Vec、Glove这样的词向量模型,正逐渐地被基于Transformer的BERT等模型代替,不过经典始终是经典,词向量模型依然在不少场景发光发热,并且仍有不少值得我们去研究的地方。本文我们来关心一个词向量模型可能有的疑惑:词向量的维度大概多少才够?
先说结论,笔者给出的估算结果是
\begin{equation}n > 8.33\log N\label{eq:final}\end{equation}
更简约的话可以直接记$n > 8\log N$,其中$N$是词表大小,$n$就是词向量维度,$\log$是自然对数。当$n$超过这个阈值时,就说明模型有足够的容量容纳这$N$个词语(当然$n$越大过拟合风险也越大)。这样一来,当$N=100000$时,得到的$n$大约是96,所以对于10万个词的词向量模型来说,维度选择96就足够了;如果要容纳500万个词,那么$n$大概就是128。
再谈类别不平衡问题:调节权重与魔改Loss的对比联系
By 苏剑林 | 2020-08-31 | 75930位读者 | 引用类别不平衡问题,也称为长尾分布问题,在本博客里已经有好几次相关讨论了,比如《从loss的硬截断、软化到focal loss》、《将“Softmax+交叉熵”推广到多标签分类问题》、《通过互信息思想来缓解类别不平衡问题》。对于缓解类别不平衡,比较基本的方法就是调节样本权重,看起来“高端”一点的方法则是各种魔改loss了(比如Focal Loss、Dice Loss、Logits Adjustment等),本文希望比较系统地理解一下它们之间的联系。
从光滑准确率到交叉熵
这里的分析主要以sigmoid的2分类为主,但多数结论可以平行推广到softmax的多分类。设$x$为输入,$y\in\{0,1\}$为目标,$p_{\theta}(x) \in [0, 1]$为模型。理想情况下,当然是要评测什么指标,我们就去优化那个指标。对于分类问题来说,最朴素的指标当然就是准确率,但准确率并没有办法提供有效的梯度,所以不能直接来训练。
殊途同归的策略梯度与零阶优化
By 苏剑林 | 2020-09-15 | 54852位读者 | 引用深度学习如此成功的一个巨大原因就是基于梯度的优化算法(SGD、Adam等)能有效地求解大多数神经网络模型。然而,既然是基于梯度,那么就要求模型是可导的,但随着研究的深入,我们时常会有求解不可导模型的需求,典型的例子就是直接优化准确率、F1、BLEU等评测指标,或者在神经网络里边加入了不可导模块(比如“跳读”操作)。
本文将简单介绍两种求解不可导的模型的有效方法:强化学习的重要方法之一策略梯度(Policy Gradient),以及干脆不需要梯度的零阶优化(Zeroth Order Optimization)。表面上来看,这是两种思路完全不一样的优化方法,但本文将进一步证明,在一大类优化问题中,其实两者基本上是等价的。
提速不掉点:基于词颗粒度的中文WoBERT
By 苏剑林 | 2020-09-18 | 108493位读者 | 引用当前,大部分中文预训练模型都是以字为基本单位的,也就是说中文语句会被拆分为一个个字。中文也有一些多颗粒度的语言模型,比如创新工场的ZEN和字节跳动的AMBERT,但这类模型的基本单位还是字,只不过想办法融合了词信息。目前以词为单位的中文预训练模型很少,据笔者所了解到就只有腾讯UER开源了一个以词为颗粒度的BERT模型,但实测效果并不好。
那么,纯粹以词为单位的中文预训练模型效果究竟如何呢?有没有它的存在价值呢?最近,我们预训练并开源了以词为单位的中文BERT模型,称之为WoBERT(Word-based BERT,我的BERT!),实验显示基于词的WoBERT在不少任务上有它独特的优势,比如速度明显的提升,同时效果基本不降甚至也有提升。在此对我们的工作做一个总结。
必须要GPT3吗?不,BERT的MLM模型也能小样本学习
By 苏剑林 | 2020-09-27 | 149058位读者 | 引用大家都知道现在GPT3风头正盛,然而,到处都是GPT3、GPT3地推,读者是否记得GPT3论文的名字呢?事实上,GPT3的论文叫做《Language Models are Few-Shot Learners》,标题里边已经没有G、P、T几个单词了,只不过它跟开始的GPT是一脉相承的,因此还是以GPT称呼它。顾名思义,GPT3主打的是Few-Shot Learning,也就是小样本学习。此外,GPT3的另一个特点就是大,最大的版本多达1750亿参数,是BERT Base的一千多倍。
正因如此,前些天Arxiv上的一篇论文《It's Not Just Size That Matters: Small Language Models Are Also Few-Shot Learners》便引起了笔者的注意,意译过来就是“谁说一定要大的?小模型也可以做小样本学习”。显然,这标题对标的就是GPT3,于是笔者饶有兴趣地点进去看看是谁这么有勇气挑战GPT3,又是怎样的小模型能挑战GPT3?经过阅读,原来作者提出通过适当的构造,用BERT的MLM模型也可以做小样本学习,看完之后颇有一种“原来还可以这样做”的恍然大悟感~在此与大家分享一下。
最近评论