校外通过VPN通道访问华师资源
By 苏剑林 | 2013-01-23 | 37954位读者 | 引用在学校使用校园网时,是很容易访问到华师内部的各个网站的,比如教务系统、图书馆电子资源等,但是如果使用校外网或者是在家时就不那么容易了。另外一种情况是,期末同学回家了,很想早点知道成绩,一般我们会上http://jwc.scnu.edu.cn查询,这个网站在校内校外都可以登陆,但是通常来说为了成绩的录入,会把成绩查询功能关闭掉一段时间,事实上,大部分的成绩都已经录入了。在校园网时,心急的朋友可以访问http://222.201.93.5:211来查询,可是这个网址在校外是不能用的。VPN通道就是为这些校外需求而开通的。
使用方法很简单,打开
https://121.8.171.37/
输入校园卡的账号密码登陆就行了。登录后就会出现校内网的各种链接,包括图书馆资源、教务系统等等。
Transformer升级之路:8、长度外推性与位置鲁棒性
By 苏剑林 | 2023-01-31 | 42560位读者 | 引用上一篇文章《Transformer升级之路:7、长度外推性与局部注意力》我们讨论了Transformer的长度外推性,得出的结论是长度外推性是一个训练和预测的不一致问题,而解决这个不一致的主要思路是将注意力局部化,很多外推性好的改进某种意义上都是局部注意力的变体。诚然,目前语言模型的诸多指标看来局部注意力的思路确实能解决长度外推问题,但这种“强行截断”的做法也许会不符合某些读者的审美,因为人工雕琢痕迹太强,缺乏了自然感,同时也让人质疑它们在非语言模型任务上的有效性。
本文我们从模型对位置编码的鲁棒性角度来重新审视长度外推性这个问题,此思路可以在基本不对注意力进行修改的前提下改进Transformer的长度外推效果,并且还适用多种位置编码,总体来说方法更为优雅自然,而且还适用于非语言模型任务。
Transformer升级之路:7、长度外推性与局部注意力
By 苏剑林 | 2023-01-12 | 85381位读者 | 引用对于Transformer模型来说,其长度的外推性是我们一直在追求的良好性质,它是指我们在短序列上训练的模型,能否不用微调地用到长序列上并依然保持不错的效果。之所以追求长度外推性,一方面是理论的完备性,觉得这是一个理想模型应当具备的性质,另一方面也是训练的实用性,允许我们以较低成本(在较短序列上)训练出一个长序列可用的模型。
下面我们来分析一下加强Transformer长度外推性的关键思路,并由此给出一个“超强基线”方案,然后我们带着这个“超强基线”来分析一些相关的研究工作。
思维误区
第一篇明确研究Transformer长度外推性的工作应该是ALIBI,出自2021年中期,距今也不算太久。为什么这么晚(相比Transformer首次发表的2017年)才有人专门做这个课题呢?估计是因为我们长期以来,都想当然地认为Transformer的长度外推性是位置编码的问题,找到更好的位置编码就行了。
Transformer升级之路:12、无限外推的ReRoPE?
By 苏剑林 | 2023-08-07 | 60683位读者 | 引用自从在《Transformer升级之路:11、将β进制位置进行到底》中引入混合进制的思路进一步推广了NTK-aware Scaled RoPE后,笔者感觉类似思路的效果已经达到了上限,想要更大幅度的提升就必须另辟蹊径了。这时候笔者想起了此前构思过的一个思路,该思路由于复杂度较高所以被搁置下了,既然现在已经遇到了瓶颈,那么“唯一的办法就是最好的办法”,于是便将它重拾起来。
万万没想到的是,尽管该方法增加了一些推理复杂度,但它的实验效果却惊人地好——甚至隐约有无限的长度外推能力!因此,笔者迫不及待地撰写了本文来分享该方法。由于形式上跟ReLU激活函数的相似性,所以笔者将该方法命名为“ReRoPE (Rectified Rotary Position Embeddings)”。
重温
我们知道,RoPE形式上是一种绝对位置编码,但实际上给Attention带来的是相对位置信息,即如下的Toeplitz矩阵:
Bias项的神奇作用:RoPE + Bias = 更好的长度外推性
By 苏剑林 | 2023-04-03 | 39577位读者 | 引用【注:后来经过反复测试发现,发现此篇文章的长度外推结果可复现性比较不稳定(可能跟模型结构、超参数等紧密相关),请自行斟酌使用。】
万万没想到,Bias项能跟Transformer的长度外推性联系在一起!
长度外推性是我们希望Transformer具有的一个理想性质,笔者曾在《Transformer升级之路:7、长度外推性与局部注意力》、《Transformer升级之路:8、长度外推性与位置鲁棒性》系统地介绍过这一问题。至于Bias项(偏置项),目前的主流观点是当模型足够大时,Bias项不会有什么特别的作用,所以很多模型选择去掉Bias项,其中代表是Google的T5和PaLM,我们后面做的RoFormerV2和GAU-α也沿用了这个做法。
那么,这两个看上去“风牛马不相及”的东西,究竟是怎么联系起来的呢?Bias项真的可以增强Transformer的长度外推性?且听笔者慢慢道来。
Transformer升级之路:9、一种全局长度外推的新思路
By 苏剑林 | 2023-05-12 | 55086位读者 | 引用说到Transformer无法处理超长序列的原因,大家的第一反应通常都是Self Attention的二次复杂度。但事实上,即便忽略算力限制,常规的Transformer也无法处理超长序列,因为它们的长度外推性(Length Extrapolation)并不好,具体表现为当输入序列明显超过训练长度时,模型的效果通常会严重下降。
尽管已有一些相关工作,但长度外推问题离实际解决还比较远。本文介绍笔者构思的一种参考方案,它可能是目前唯一一种可以用在生成模型上、具备全局依赖能力的长度外推方法。
方法回顾
长度外推,也称为长度泛化(Length Generalization),此前我们在《Transformer升级之路:7、长度外推性与局部注意力》、《Transformer升级之路:8、长度外推性与位置鲁棒性》已经介绍过部分工作。然而,它们各有各的问题。
Transformer升级之路:16、“复盘”长度外推技术
By 苏剑林 | 2024-01-26 | 67726位读者 | 引用回过头来看,才发现从第7篇《Transformer升级之路:7、长度外推性与局部注意力》开始,“Transformer升级之路”这个系列就跟长度外推“杠”上了,接连9篇文章(不算本文)都是围绕长度外推展开的。如今,距离第7篇文章刚好是一年多一点,在这一年间,开源社区关于长度外推的研究有了显著进展,笔者也逐渐有了一些自己的理解,比如其实这个问题远不像一开始想象那么简单,以往很多基于局部注意力的工作也不总是有效,这暗示着很多旧的分析工作并没触及问题的核心。
在这篇文章中,笔者尝试结合自己的发现和认识,去“复盘”一下主流的长度外推结果,并试图从中发现免训练长度外推的关键之处。
问题定义
顾名思义,免训练长度外推,就是不需要用长序列数据进行额外的训练,只用短序列语料对模型进行训练,就可以得到一个能够处理和预测长序列的模型,即“Train Short, Test Long”。那么如何判断一个模型能否用于长序列呢?最基本的指标就是模型的长序列Loss或者PPL不会爆炸,更加符合实践的评测则是输入足够长的Context,让模型去预测答案,然后跟真实答案做对比,算BLEU、ROUGE等,LongBench就是就属于这类榜单。
【理科生读小说】来谈谈“四两拨千斤”
By 苏剑林 | 2018-01-28 | 33919位读者 | 引用多彩金庸
在金庸笔下(其实很多武侠小说都如此),武功可以分三种:第一种是实打实的猛,如洪七公的降龙十八掌、金轮法王的龙象般若功等,它们的特点是主要特点是刚猛,比如
乔峰的降龙二十八掌是丐帮前任帮主汪剑通所传,但乔峰生俱异禀,于武功上得天独厚,他这降龙二十八掌摧枯拉朽,无坚不破,较之汪帮主尤有胜过。乔峰见对方双掌齐推,自己如以单掌相抵,倘若拼成平手,自己似乎稍占上风,不免有失恭敬,于是也双掌齐出。他左右双掌中所使掌力,也仍都是外三内七,将大部分掌力留劲不发。
——出自《天龙八部》世纪新修版
第二种是以虚招为主,也就是说你不能比对手猛,你骗倒对手也行,比如桃花岛的落英神剑掌:
这套掌法是黄药师观赏桃花岛中桃花落英缤纷而创制,出招变化多端,还讲究姿势之美。她双臂挥动,四方八面都是掌影,或五虚一实,或八虚一实,直似桃林中狂风忽起、万花齐落,妙在手足飘逸,宛若翩翩起舞,但她一来功力尚浅,二来心存顾惜,未能出掌凌厉如剑。郭靖眼花缭乱,哪里还守得住门户,不提防啪啪啪啪,左肩右肩、前胸后背,接连中了四掌,黄蓉全未使力,郭靖自也不觉疼痛。
——出自《射雕英雄传》世纪新修版
第三种是以巧招为主,它不求一味刚猛,也不一味虚虚实实,而且讲究用力恰到好处,起到“以柔克刚”、“四两拨千斤”之效。显然,这种武功的代表作是太极,另外打狗棒法、乾坤大挪移、还有全真教和古墓派的武功也暗含了这个道理,比如:
最近评论