5 Jun

眼见未必为实——“视超光速”现象的产生

超光速飞行

超光速飞行

爱因斯坦理论的信仰者们必须接受一个理论,那就是光速是宇宙中最快的速度,任何物体的速度都不可能超过光速(两束反向发射的光,它们的相对速度依然是c,而不是2c)。

但是,却有一个不容否定的事实,天文学家的确观测到了运行速度大于光速的天体。这是怎么回事呢?爱因斯坦错了?相对论有误?还是有其他不为我们知道的秘密?

不过要是想从这个事实推翻相对论是不大可能的,因为爱因斯坦的信仰者们从简单的几何定理出发,就解释了这个现象。

点击阅读全文...

8 Jun

作文《人与路》

高三高考用考场,我们就放假了。无奈高三正兴致勃勃地写着作文的同时,我们这群“低年级”也得写作文。这一次作文是标题作文——《人与路》

人与路的关系是什么?是人在走路,还是路在指引着人?

不同的人会有不同的答案。但是在我看来,智者总在走路,而愚者却在“被走路”。走路的人清楚自己的方向,敢于追逐自己所喜欢的,拥有无畏的精神;“被走路”的人无法找到心中的罗盘,就好比云雾中的星光,飘忽不定。两个人的路的终点都是一样的,只是一个人走到了,一个人没有走到。

当我们在人生的大海中航行时,我们是否能够认识到,我们究竟在“走路”还是“被走路”呢?只有自己走路,才能够更好地追逐自己的梦想,使自己的人生更上一层楼!

点击阅读全文...

17 Jun

从牛顿力学角度研究宇宙学

Universe_expansion

Universe_expansion

不少天文爱好者对宇宙学这方面的内容“听而生畏”,觉得没有爱因斯坦的广义相对论等复杂理论基础是不可理解的。的确,这种观点没有错,当前的宇宙学对宇宙的精确描述,的确是建立在广义相对论和量子力学等理论的基础之上的。BoJone也只是在书上略略浏览,根本谈不上有什么了解。但是,对于一般的天文爱好者来说,只要对牛顿力学和微积分有一定的了解,就可以对我们的宇宙有一个大概的描述,也能够得出很多令人惊喜的结论。相信进行了这项工作之后,很多爱好者都会改观:原来宇宙学也并不是那么难...并且能够得出这样的一个结论:广义相对论虽然对牛顿引力理论进行了彻底的改革,但是从数学的角度来讲,它仅仅对牛顿力学进行了修正。

点击阅读全文...

27 Jun

威力巨大的“有向线段”

向量

向量

向量,又称矢量,定义为线性空间中需要大小和方向才能完整表示的一个量。而对于我们来说,还是使用最简单的概念比较合适:向量就是“有向线段”。向量这一概念,来源于物理,而又不仅仅应用于物理。向量的出现,使得几何学和物理学的发展又多了一个强有力的工具,记得有一句这样的话:“对数的出现,延长了天文学家的寿命。”而我可以毫不夸张地说,向量的发展,也在不断地延长着数学家和物理学家的寿命!

点击阅读全文...

24 Jul

《向量》系列——3.当天体力学遇到向量(1)

不知道各位读者还记得BoJone在《方程与宇宙》这一章中写了整整三篇文章来学习天体力学中的二体问题吗?虽然对二体问题基本上做了一个描述,但是依旧是冰山一角。而在最近写的几篇文章中,BoJone又强调了“向量”的巨大作用。那么,当天体力学与向量碰头后,会发生什么大事呢?难道,火星撞上了地球?

点击阅读全文...

29 Jul

R136a1,300倍太阳质量的怪兽星

原文链接:http://www.eso.org/public/news/eso1030/

译文来自:http://www.astronomy.com.cn/bbs/thread-141201-1-1.html

Stars Just Got Bigger 超大质量的巨星 A 300 Solar Mass Star Uncovered 发现超过300太阳质量的蓝超巨星

Using a combination of instruments on ESO’s Very Large Telescope, astronomers have discovered the most massive stars to date, one weighing at birth more than 300 times the mass of the Sun, or twice as much as the currently accepted limit of 150 solar masses. The existence of these monsters — millions of times more luminous than the Sun, losing weight through very powerful winds — may provide an answer to the question “how massive can stars be?”

借助于ESO的甚大望远镜(VLT),天文学家发现了创质量纪录的巨星——达300个太阳质量以上,是我们此前公认的(星族II)恒星质量上限——150个太阳的2倍。发现如此怪兽级恒星:光度是太阳的数百万倍,以极速恒星风迅速损失质量——由此产生了一个问题:恒星质量上限到底是多少?

点击阅读全文...

30 Jul

旋转的弹簧将如何伸长?

旋转的弹簧

旋转的弹簧

一根均匀的弹簧长度l

0

,线密度λ

0

,劲度系数k,总质量M。现在没有重力的环境下,绕其一端作角速度ω的旋转(角速度恒定),则此时其长度变为多少?

这是网友“宇宙为家”在几天前提出的问题。期间我曾做过多次解答,犯了若干次错误,经过修修补补,得出了最后的答案,在此感谢“宇宙为家”朋友的多次提醒。如果下面的答案依旧有错误,望各位读者发现并指出。

点击阅读全文...

8 Aug

三次方程的三角函数解法

对于解方程,代数学家希望能够从理论上证明解的存在性以及解的求法,所以就有了1到4次方程的求根公式、5次及以上的代数方程没有根式可解等重要理论;然而,通常的学者(如物理学家、天文学家)都不需要这些内容,他们只关心如何尽可能快地求出指定方程的根(尤其是实数根),所以他们通常关注的是方程的数值算法,当然,如果能有一个相对简单的求根公式,也是他们所希望的。而接下来所要介绍的内容,则是满足了这一需要的三次方程的求根公式,其中用到的相当一部分的理论,是与三角函数相关的。

储备

\begin{equation}\frac{2}{\tan 2A}=\frac{1}{\tan A}-\tan A\end{equation}
\begin{equation}\frac{2}{\sin 2A}=\frac{1}{\tan A}+\tan A\end{equation}
\begin{equation}\cos(3A)=4\cos^3 A-3\cos A\end{equation}

点击阅读全文...