眼见未必为实——“视超光速”现象的产生
By 苏剑林 | 2010-06-05 | 64959位读者 | 引用高三高考用考场,我们就放假了。无奈高三正兴致勃勃地写着作文的同时,我们这群“低年级”也得写作文。这一次作文是标题作文——《人与路》
人与路的关系是什么?是人在走路,还是路在指引着人?
不同的人会有不同的答案。但是在我看来,智者总在走路,而愚者却在“被走路”。走路的人清楚自己的方向,敢于追逐自己所喜欢的,拥有无畏的精神;“被走路”的人无法找到心中的罗盘,就好比云雾中的星光,飘忽不定。两个人的路的终点都是一样的,只是一个人走到了,一个人没有走到。
当我们在人生的大海中航行时,我们是否能够认识到,我们究竟在“走路”还是“被走路”呢?只有自己走路,才能够更好地追逐自己的梦想,使自己的人生更上一层楼!
从牛顿力学角度研究宇宙学
By 苏剑林 | 2010-06-17 | 47149位读者 | 引用不少天文爱好者对宇宙学这方面的内容“听而生畏”,觉得没有爱因斯坦的广义相对论等复杂理论基础是不可理解的。的确,这种观点没有错,当前的宇宙学对宇宙的精确描述,的确是建立在广义相对论和量子力学等理论的基础之上的。BoJone也只是在书上略略浏览,根本谈不上有什么了解。但是,对于一般的天文爱好者来说,只要对牛顿力学和微积分有一定的了解,就可以对我们的宇宙有一个大概的描述,也能够得出很多令人惊喜的结论。相信进行了这项工作之后,很多爱好者都会改观:原来宇宙学也并不是那么难...并且能够得出这样的一个结论:广义相对论虽然对牛顿引力理论进行了彻底的改革,但是从数学的角度来讲,它仅仅对牛顿力学进行了修正。
威力巨大的“有向线段”
By 苏剑林 | 2010-06-27 | 20175位读者 | 引用《向量》系列——3.当天体力学遇到向量(1)
By 苏剑林 | 2010-07-24 | 15908位读者 | 引用R136a1,300倍太阳质量的怪兽星
By 苏剑林 | 2010-07-29 | 27514位读者 | 引用原文链接:http://www.eso.org/public/news/eso1030/
译文来自:http://www.astronomy.com.cn/bbs/thread-141201-1-1.html
Stars Just Got Bigger 超大质量的巨星 A 300 Solar Mass Star Uncovered 发现超过300太阳质量的蓝超巨星
Using a combination of instruments on ESO’s Very Large Telescope, astronomers have discovered the most massive stars to date, one weighing at birth more than 300 times the mass of the Sun, or twice as much as the currently accepted limit of 150 solar masses. The existence of these monsters — millions of times more luminous than the Sun, losing weight through very powerful winds — may provide an answer to the question “how massive can stars be?”
借助于ESO的甚大望远镜(VLT),天文学家发现了创质量纪录的巨星——达300个太阳质量以上,是我们此前公认的(星族II)恒星质量上限——150个太阳的2倍。发现如此怪兽级恒星:光度是太阳的数百万倍,以极速恒星风迅速损失质量——由此产生了一个问题:恒星质量上限到底是多少?
旋转的弹簧将如何伸长?
By 苏剑林 | 2010-07-30 | 95331位读者 | 引用三次方程的三角函数解法
By 苏剑林 | 2010-08-08 | 83785位读者 | 引用对于解方程,代数学家希望能够从理论上证明解的存在性以及解的求法,所以就有了1到4次方程的求根公式、5次及以上的代数方程没有根式可解等重要理论;然而,通常的学者(如物理学家、天文学家)都不需要这些内容,他们只关心如何尽可能快地求出指定方程的根(尤其是实数根),所以他们通常关注的是方程的数值算法,当然,如果能有一个相对简单的求根公式,也是他们所希望的。而接下来所要介绍的内容,则是满足了这一需要的三次方程的求根公式,其中用到的相当一部分的理论,是与三角函数相关的。
储备
\begin{equation}\frac{2}{\tan 2A}=\frac{1}{\tan A}-\tan A\end{equation}
\begin{equation}\frac{2}{\sin 2A}=\frac{1}{\tan A}+\tan A\end{equation}
\begin{equation}\cos(3A)=4\cos^3 A-3\cos A\end{equation}
最近评论