《虚拟的实在(2)》——为什么引力如此复杂?
By 苏剑林 | 2013-06-07 | 31992位读者 | 引用上一篇文章里我已经从我自己的理解角度简单说了一下场论的必要性,这次让我们再次谈到这个话题,企图在文字层面上得到更深入的认识。
上一两周的时间,我一直在找资料,主要是线性引力的资料,并且发现了很多有趣的东西,在此一并与大家分享一下。首先,当我在Google中输入“线性引力”时,我发现了一本“奇书”,一本名副其实的“巨著”——《引力论》!洋洋1300多页的大作,三位“超级巨星”——C.W.麦思纳(Charles W.Misner)、K.S.索恩(Kip S.Thorne)、J.A.惠勒(John Archibald Wheeler)——联合编写,恐怕再也找不到哪本书可以PK它的“全明星阵容”了。该书英文名为Gravitation,中文是由台湾翻译的,繁体中文版。全书讲述了引力的研究历史和发展情况,更重要的是几乎每一处历史都给出了数学论证!最最重要的,作者惠勒还是跟爱因斯坦同一个研究时代的人,我们可以最真实的感受到那年代的研究。看到这里,我就迫不及待地想买了,由于各种原因,我们很难买到,到图书馆找,发现有英文版的,就马上借过来了,另外因为买不到中文版,我只好到网上买了电子版,然后打印出来了。不过不是很清晰,而且自我感觉中文翻译不是很好(当然,已经够我们阅读了)。
欢聚兴隆,畅言科普
记信息时代的天文科普研讨会暨第三届宇宙驿站站长联谊会
在信息时代的今天,利用互联网相互交流以及查找各种资讯已经成为了许多天文爱好者的必经之道。同好们也许都浏览过牧夫天文论坛、星友空间站、空间天文网等天文科学网站,事实上,它们都源于一个共同的科普网站群体——宇宙驿站。正如她的名字所言,宇宙驿站是我们一大群天文爱好者在互联网上的“家”,她为我们这群热衷于网络科普的站长免费提供了稳定的网站空间。
宇宙驿站发起于2002年,是国家天文台LAMOST项目之一,迄今已经有近百位站长在上面“安家”。2013年6月28日到6月30日,我们这群站长齐聚兴隆,开展了一次别开生面的会议——“信息时代的天文科普研讨会暨第三届站长联谊会”。
CreaWriter,惬意创作!
By 苏剑林 | 2013-08-08 | 20206位读者 | 引用刚看完了电影《转山》,挺感动的,总觉得好像不写点东西就对不起这部电影了。
这还需要从上学期选公选课谈起。上学期我选择的公选课是数据库,而体育课则是太极,接近期末考的时候又重新选公选课了,我想选修一门轻松点、惬意点的课程,刚开始是选择了书法,后来看到了“自行车出行与户外旅游”,有点心动,再看上课老师,原来就是我们的太极老师,上了一学期的太极,跟他有些熟悉,也觉得他很好相处,就觉得选择这门课程了。
上一周二是这门课程是第一次课,老师讲得很精彩,而事实上,我唯一能够全程专心听课的就只有两门课程,一门就是这个公选课,另外就是马克思列宁主义(奇怪吧?确实是,马列老师讲得真的很精彩,我几乎没有分过神)。《转山》这部电影也是上公选课的时候老师推荐的,是根据同名小说改编的。大体的情节是一个台湾年轻人,只身踏上骑自行车从丽江到拉萨的旅途。影片描绘了他路上的崎岖行程,描绘了一路上的风土人情,让人颇为深刻。
数学基本技艺(A Mathematical Trivium)
By 苏剑林 | 2013-09-26 | 23745位读者 | 引用这是Arnold给物理系学生出的基础数学题。原文是Arnold于1991年,在Russian Math Surveys 46:1(1991),271-278上发的一篇文章,英文名叫 A mathematical trivium,这篇文章是有个前言的,用两页纸的内容吐槽了1991年的学生数学学得很烂,尤其是物理系的。文后附了100道数学题,号称是物理系学生的数学底线。
这是给物理系出的数学题,所以和一般的数学竞赛题目不同,没太多证明题,主要就是计算和解模型,而且还有不少近似估算的,带有明显的物理风格。虽然作者说这是物理系学生数学的底线,但即使对于数学系的学生来说,这些题目还是有不少难度的。网络也有一些题目的答案,但是都比较零散。在这里与大家分享一下题目。什么时候有时间了,或者刚好碰到类似的研究,我也会把题目做做,与各位分享。希望有兴趣的朋友做了之后也把答案与大家交流呀。
小论文《欧拉数学在数列级数的妙用》
By 苏剑林 | 2013-12-26 | 24529位读者 | 引用高维空间的叉积及其几何意义
By 苏剑林 | 2013-12-26 | 57791位读者 | 引用向量之间的运算有点积和叉积(Cross Product,向量积、外积),其中点积是比较简单的,而且很容易推广到高维;但是叉积不同,一般来说它只不过是三维空间中的东西。叉积的难以推广在于它的多重含义性,如果将向量及其叉积放到张量里边来看(这属于微分形式的内容),那么三维以上的向量叉积是不存在的;但是如果只是把叉积看成是“由两个向量生成第三个与其正交的向量”的工具的话,那么叉积也是可以高维推广的,而且推广的技巧非常巧妙,与三维空间的叉积也非常相似。
回顾三维空间
为了推广三维空间的叉积,首先回顾三维空间的叉积来源是有益的。叉积起源于四元数乘法,但是从目的性来讲,我们希望构造一个向量$\boldsymbol{w}=(w_1,w_2,w_3)$,使得它与已知的两个不共线的向量$\boldsymbol{u}=(u_1,u_2,u_3),\boldsymbol{v}=(v_1,v_2,v_3)$垂直(正交)。从普适性的角度来讲,我们还希望构造出来的向量没有任何“奇点”,为此,我们只用乘法构造。至于叉积的几何意义,则是后话,毕竟,先达到基本的目的再说。
最近评论