30 Apr

当概率遇上复变:随机游走基本公式

笔者发现,有很多概率问题,尤其是独立重复实验问题,如果用生成函数的方法来做,会显得特别方便。本文要讲的“随机游走”问题便是其中一例,它又被形象地叫做“醉汉问题”,其本质上是一个二项分布,但是由于取了极限,出现了很多新的性质和应用。我们先考虑如下问题:

考虑实数轴上的一个粒子,在$t=0$时刻它位于原点,每过一秒,它要不向前移动一格(+1),要不就向后移动一格(-1),问$n$秒后它所处位置的概率分布。

点击阅读全文...

4 Jun

当概率遇上复变:随机游走与路径积分

我们在上一篇文章中已经看到,随机游走的概率分布是正态的,而在概率论中可以了解到正态分布(几乎)是最重要的一种分布了。随机游走模型和正态分布的应用都很广,我们或许可以思考一个问题,究竟是随机游走造就了正态分布,还是正态分布造就了随机游走?换句话说,哪个更本质些?个人就自己目前所阅读到的内容来看,随机游走更本质些,随机游走正好对应着普遍存在的随机不确定性(比如每次测量的误差),它的分布正好就是正态分布,所以正态分布才应用得如此广泛——因为随机不确定性无处不在。

下面我们来考虑随机游走的另外一种描述方式,原则上来说,它更广泛,更深刻,其大名曰“路径积分”。

点击阅读全文...

6 May

变分自编码器(五):VAE + BN = 更好的VAE

本文我们继续之前的变分自编码器系列,分析一下如何防止NLP中的VAE模型出现“KL散度消失(KL Vanishing)”现象。本文受到参考文献是ACL 2020的论文《A Batch Normalized Inference Network Keeps the KL Vanishing Away》的启发,并自行做了进一步的完善。

值得一提的是,本文最后得到的方案还是颇为简洁的——只需往编码输出加入BN(Batch Normalization),然后加个简单的scale——但确实很有效,因此值得正在研究相关问题的读者一试。同时,相关结论也适用于一般的VAE模型(包括CV的),如果按照笔者的看法,它甚至可以作为VAE模型的“标配”。

最后,要提醒读者这算是一篇VAE的进阶论文,所以请读者对VAE有一定了解后再来阅读本文。

VAE简单回顾

这里我们简单回顾一下VAE模型,并且讨论一下VAE在NLP中所遇到的困难。关于VAE的更详细介绍,请读者参考笔者的旧作《变分自编码器(一):原来是这么一回事》《变分自编码器(二):从贝叶斯观点出发》等。

VAE的训练流程

VAE的训练流程大概可以图示为

VAE训练流程图示

VAE训练流程图示

点击阅读全文...

13 Feb

Designing GANs:又一个GAN生产车间

在2018年的文章里《f-GAN简介:GAN模型的生产车间》笔者介绍了f-GAN,并评价其为GAN模型的“生产车间”,顾名思义,这是指它能按照固定的流程构造出很多不同形式的GAN模型来。前几天在arxiv上看到了新出的一篇论文《Designing GANs: A Likelihood Ratio Approach》(后面简称Designing GANs或原论文),发现它在做跟f-GAN同样的事情,但走的是一条截然不同的路(不过最后其实是殊途同归),整篇论文颇有意思,遂在此分享一番。

f-GAN回顾

《f-GAN简介:GAN模型的生产车间》中我们可以知道,f-GAN的首要步骤是找到满足如下条件的函数$f$:

1、$f$是非负实数到实数的映射($\mathbb{R}^* \to \mathbb{R}$);

2、$f(1)=0$;

3、$f$是凸函数。

点击阅读全文...

1 Dec

熵的概念

作为一名物理爱好者,我一直对统计力学中“熵”这个概念感到神秘和好奇。因此,当我接触数据科学的时候,我也对最大熵模型产生了浓厚的兴趣。

熵是什么?在通俗的介绍中,熵一般有两种解释:(1)熵是不确定性的度量;(2)熵是信息的度量。看上去说的不是一回事,其实它们说的就是同一个意思。首先,熵是不确定性的度量,它衡量着我们对某个事物的“无知程度”。熵为什么又是信息的度量呢?既然熵代表了我们对事物的无知,那么当我们从“无知”到“完全认识”这个过程中,就会获得一定的信息量,我们开始越无知,那么到达“完全认识”时,获得的信息量就越大,因此,作为不确定性的度量的熵,也可以看作是信息的度量,说准确点,是我们能从中获得的最大的信息量。

点击阅读全文...

11 Dec

上集回顾

在第一篇中,笔者介绍了“熵”这个概念,以及它的一些来龙去脉。熵的公式为
$$S=-\sum_x p(x)\log p(x)\tag{1}$$

$$S=-\int p(x)\log p(x) dx\tag{2}$$
并且在第一篇中,我们知道熵既代表了不确定性,又代表了信息量,事实上它们是同一个概念。

说完了熵这个概念,接下来要说的是“最大熵原理”。最大熵原理告诉我们,当我们想要得到一个随机事件的概率分布时,如果没有足够的信息能够完全确定这个概率分布(可能是不能确定什么分布,也可能是知道分布的类型,但是还有若干个参数没确定),那么最为“保险”的方案是选择使得熵最大的分布。

最大熵原理

承认我们的无知

很多文章在介绍最大熵原理的时候,会引用一句著名的句子——“不要把鸡蛋放在同一个篮子里”——来通俗地解释这个原理。然而,笔者窃以为这句话并没有抓住要点,并不能很好地体现最大熵原理的要义。笔者认为,对最大熵原理更恰当的解释是:承认我们的无知!

点击阅读全文...

20 Dec

上集回顾

在上一篇文章中,笔者分享了自己对最大熵原理的认识,包括最大熵原理的意义、最大熵原理的求解以及一些简单而常见的最大熵原理的应用。在上一篇的文末,我们还通过最大熵原理得到了正态分布,以此来说明最大熵原理的深刻内涵和广泛意义。

本文中,笔者将介绍基于最大熵原理的模型——最大熵模型。本文以有监督的分类问题来介绍最大熵模型,所谓有监督,就是基于已经标签好的数据进行的。

事实上,第二篇文章的最大熵原理才是主要的,最大熵模型,实质上只是最大熵原理的一个延伸,或者说应用。

最大熵模型

分类:意味着什么?

在引入最大熵模型之前,我们先来多扯一点东西,谈谈分类问题意味着什么。假设我们有一批标签好的数据:
$$\begin{array}{c|cccccccc}
\hline
\text{数据}x & 1 & 2 & 3 & 4 & 5 & 6 & \dots & 100 \\
\hline
\text{标签}y & 1 & 0 & 1 & 0 & 1 & 0 & \dots & 0\\
\hline \end{array}$$

点击阅读全文...

30 May

路径积分系列:2.随机游走模型

随机游走模型形式简单,但通过它可以导出丰富的结果,它是物理中各种扩散模型的基础之一,它也等价于随机过程中的布朗运动.

笔者所阅的文献表明,数学家已经对对称随机游走问题作了充分研究[2],也探讨了随机游走问题与偏微分方程的关系[3],并且还研究过不对称随机游走问题[4]. 然而,已有结果的不足之处有:1、在推导随机游走问题的概率分布或者偏微分方程之时,所用的方法不够简洁明了;2、没有研究更一般的不对称随机游走问题.

本章弥补了这一不足,首先通过母函数和傅里叶变换的方法,推导出了不对称随机游走问题所满足的偏微分方程,并且提出,由于随机游走容易通过计算机模拟,因此通过随机游走来模拟偏微分方程的解是一种有效的数值途径.

模型简介

本节通过一个本质上属于二项分布的走格子问题来引入随机游走.

考虑实数轴上的一个粒子,在$t=0$时刻它位于原点,每秒钟它以相等的概率向前或向后移动一格($+1$或$-1$),问$n$秒后它所处位置的概率分布.

点击阅读全文...