从Wasserstein距离、对偶理论到WGAN
By 苏剑林 | 2019-01-20 | 208387位读者 | 引用2017年的时候笔者曾写过博文《互怼的艺术:从零直达WGAN-GP》,从一个相对通俗的角度来介绍了WGAN,在那篇文章中,WGAN更像是一个天马行空的结果,而实际上跟Wasserstein距离没有多大关系。
在本篇文章中,我们再从更数学化的视角来讨论一下WGAN。当然,本文并不是纯粹地讨论GAN,而主要侧重于Wasserstein距离及其对偶理论的理解。本文受启发于著名的国外博文《Wasserstein GAN and the Kantorovich-Rubinstein Duality》,内容跟它大体上相同,但是删除了一些冗余的部分,对不够充分或者含糊不清的地方作了补充。不管怎样,在此先对前辈及前辈的文章表示致敬。
(注:完整理解本文,应该需要多元微积分、概率论以及线性代数等基础知识。还有,本文确实长,数学公式确实多,但是,真的不复杂、不难懂,大家不要看到公式就吓怕了~)
O-GAN:简单修改,让GAN的判别器变成一个编码器!
By 苏剑林 | 2019-03-06 | 244703位读者 | 引用本文来给大家分享一下笔者最近的一个工作:通过简单地修改原来的GAN模型,就可以让判别器变成一个编码器,从而让GAN同时具备生成能力和编码能力,并且几乎不会增加训练成本。这个新模型被称为O-GAN(正交GAN,即Orthogonal Generative Adversarial Network),因为它是基于对判别器的正交分解操作来完成的,是对判别器自由度的最充分利用。
巧断梯度:单个loss实现GAN模型
By 苏剑林 | 2019-02-22 | 44973位读者 | 引用我们知道普通的模型都是搭好架构,然后定义好loss,直接扔给优化器训练就行了。但是GAN不一样,一般来说它涉及有两个不同的loss,这两个loss需要交替优化。现在主流的方案是判别器和生成器都按照1:1的次数交替训练(各训练一次,必要时可以给两者设置不同的学习率,即TTUR),交替优化就意味我们需要传入两次数据(从内存传到显存)、执行两次前向传播和反向传播。
如果我们能把这两步合并起来,作为一步去优化,那么肯定能节省时间的,这也就是GAN的同步训练。
(注:本文不是介绍新的GAN,而是介绍GAN的新写法,这只是一道编程题,不是一道算法题~)
如果在TF中
分享一次专业领域词汇的无监督挖掘
By 苏剑林 | 2019-04-10 | 83820位读者 | 引用去年 Data Fountain 曾举办了一个“电力专业领域词汇挖掘”的比赛,该比赛有意思的地方在于它是一个“无监督”的比赛,也就是说它考验的是从大量的语料中无监督挖掘专业词汇的能力。
这个显然确实是工业界比较有价值的一个能力,又想着我之前也在无监督新词发现中做过一定的研究,加之“无监督比赛”的新颖性,所以当时毫不犹豫地参加了,然而最终排名并不靠前~
不管怎样,还是分享一下我自己的做法,这是一个真正意义上的无监督做法,也许会对部分读者有些参考价值。
基准对比
首先,新词发现部分,用到了我自己写的库nlp zero,基本思路是先分别对“比赛所给语料”、“自己爬的一部分百科百科语料”做新词发现,然后两者进行对比,就能找到一批“比赛所给语料”的特征词。
非对抗式生成模型GLANN的简单介绍
By 苏剑林 | 2019-02-26 | 67271位读者 | 引用前段时间看到facebook发表了一个非对抗的生成模型GLANN(去年12月挂在arxiv上),号称用非对抗的方式也能生成1024的高清人脸,于是饶有兴致地阅读了一番,确实有点收获,但也有点失望。至于为啥失望,大家阅读下去就明白了。
原论文:《Non-Adversarial Image Synthesis with Generative Latent Nearest Neighbors》
机器之心介绍:《为什么让GAN一家独大?Facebook提出非对抗式生成方法GLANN》
效果图:
科学空间浏览指南(FAQ)
By 苏剑林 | 2019-03-26 | 129622位读者 | 引用事实上,除了写博客内容,在这几年里,笔者是花了相当一部分时间来做科学空间的“表面功夫”,为此还专门学了一点php、css和js。虽然不敢说精益求精,但总体来说网站的浏览体验应该比前几年要好得多。
考虑到有些读者可能需要的功能,但一时半会未必能留意到,遂来整理一些站内技巧。
文章篇
什么环境阅读文章最佳?
两年前科学空间就已经加入了响应式设计,自动适应不同分辨率的屏幕。因此,不管哪个分辨率的环境应该都能看清文字内容,唯一的问题是,在小屏幕手机下公式可能会显示不全或者错位。为了较好地阅读公式,最好在7寸以上的屏幕上阅读。如果一定要用小屏幕的手机,可以考虑横屏阅读。
细水长flow之可逆ResNet:极致的暴力美学
By 苏剑林 | 2019-03-21 | 111110位读者 | 引用今天我们来介绍一个非常“暴力”的模型:可逆ResNet。
为什么一个模型可以可以用“暴力”来形容呢?当然是因为它确实非常暴力:它综合了很多数学技巧,活生生地(在一定约束下)把常规的ResNet模型搞成了可逆的!
模型出自《Invertible Residual Networks》,之前在机器之心也报导过。在这篇文章中,我们来简单欣赏一下它的原理和内容。
可逆模型的点滴
为什么要研究可逆ResNet模型?它有什么好处?以前没有人研究过吗?
可逆的好处
可逆意味着什么?
意味着它是信息无损的,意味着它或许可以用来做更好的分类网络,意味着可以直接用最大似然来做生成模型,而且得益于ResNet强大的能力,意味着它可能有着比之前的Glow模型更好的表现~总而言之,如果一个模型是可逆的,可逆的成本不高而且拟合能力强,那么它就有很广的用途(分类、密度估计和生成任务,等等)。
万能的seq2seq:基于seq2seq的阅读理解问答
By 苏剑林 | 2019-12-05 | 87008位读者 | 引用今天给bert4keras新增加了一个例子:阅读理解式问答(task_reading_comprehension_by_seq2seq.py),语料跟之前一样,都是用WebQA和SogouQA,最终的得分在0.77左右(单模型,没精调)。
方法简述
由于这次主要目的是给bert4keras增加demo,因此效率就不是主要关心的目标了。这次的目标主要是通用性和易用性,所以用了最万能的方案——seq2seq来实现做阅读理解。
用seq2seq做的话,基本不用怎么关心模型设计,只要把篇章和问题拼接起来,然后预测答案就行了。此外,seq2seq的方案还自然地包括了判断篇章有无答案的方法,以及自然地导出一种多篇章投票的思路。总而言之,不考虑效率的话,seq2seq做阅读理解是一种相当优雅的方案。
这次实现seq2seq还是用UNILM的方案,如果还不了解的读者,可以先阅读《从语言模型到Seq2Seq:Transformer如戏,全靠Mask》了解相应内容。
最近评论