Transformer升级之路:9、一种全局长度外推的新思路
By 苏剑林 | 2023-05-12 | 55085位读者 | 引用说到Transformer无法处理超长序列的原因,大家的第一反应通常都是Self Attention的二次复杂度。但事实上,即便忽略算力限制,常规的Transformer也无法处理超长序列,因为它们的长度外推性(Length Extrapolation)并不好,具体表现为当输入序列明显超过训练长度时,模型的效果通常会严重下降。
尽管已有一些相关工作,但长度外推问题离实际解决还比较远。本文介绍笔者构思的一种参考方案,它可能是目前唯一一种可以用在生成模型上、具备全局依赖能力的长度外推方法。
方法回顾
长度外推,也称为长度泛化(Length Generalization),此前我们在《Transformer升级之路:7、长度外推性与局部注意力》、《Transformer升级之路:8、长度外推性与位置鲁棒性》已经介绍过部分工作。然而,它们各有各的问题。
当生成模型肆虐:互联网将有“疯牛病”之忧?
By 苏剑林 | 2023-07-14 | 47002位读者 | 引用众所周知,不管是文本还是视觉领域,各种生成模型正在以无法阻挡的势头“肆虐”互联网。虽然大家都明白,实现真正的通用人工智能(AGI)还有很长的路要走,但这并不妨碍人们越来越频繁地利用生成模型来创作和分享内容。君不见,很多网络文章已经配上了Stable Diffusion模型生成的插图;君不见,很多新闻风格已经越来越显现出ChatGPT的影子。看似无害的这种趋势,正悄然引发了一个问题:我们是否应该对互联网上充斥的生成模型数据保持警惕?
近期发表的论文《Self-Consuming Generative Models Go MAD》揭示了一种令人担忧的可能性,那就是生成模型正在互联网上的无节制扩张,可能会导致一场数字版的“疯牛病”疫情。本文一起学习这篇论文,探讨其可能带来的影响。
随机分词浅探:从Viterbi Decoding到Viterbi Sampling
By 苏剑林 | 2023-09-16 | 20938位读者 | 引用上一篇文章《大词表语言模型在续写任务上的一个问题及对策》发布后,很快就有读者指出可以在训练阶段引入带有随机性的分词结果来解决同样的问题,并且已经有论文和实现。经过进一步查阅学习,笔者发现这是一个名为Subword Regularization的技巧,最早应用在NMT(机器翻译)中,目前SentencePiece也有相应的实现。看起来这个技巧确实能缓解前述问题,甚至有助于增强语言模型的容错能力,所以就有了将它加进去BytePiece的想法。
那么问题来了,如何将确定性分词改为随机性分词呢?BytePiece是基于Unigram模型的,它通过Viterbi算法找最大概率的分词方案,既然有概率,是否就可以自然地导出随机采样?本文来讨论这个问题,并分享自己的解决方案。
从梯度最大化看Attention的Scale操作
By 苏剑林 | 2023-10-22 | 65943位读者 | 引用我们知道,Scaled Dot-Product Attention的Scale因子是$\frac{1}{\sqrt{d}}$,其中$d$是$\boldsymbol{q},\boldsymbol{k}$的维度。这个Scale因子的一般解释是:如果不除以$\sqrt{d}$,那么初始的Attention就会很接近one hot分布,这会造成梯度消失,导致模型训练不起来。然而,可以证明的是,当Scale等于0时同样也会有梯度消失问题,这也就是说Scale太大太小都不行。
那么多大的Scale才适合呢?$\frac{1}{\sqrt{d}}$是最佳的Scale了吗?本文试图从梯度角度来回答这个问题。
已有结果
在《浅谈Transformer的初始化、参数化与标准化》中,我们已经推导过标准的Scale因子$\frac{1}{\sqrt{d}}$,推导的思路很简单,假设初始阶段$\boldsymbol{q},\boldsymbol{k}\in\mathbb{R}^d$都采样自“均值为0、方差为1”的分布,那么可以算得
\begin{equation}\mathbb{V}ar[\boldsymbol{q}\cdot\boldsymbol{k}] = d\end{equation}
随机分词再探:从Viterbi Sampling到完美采样算法
By 苏剑林 | 2023-10-16 | 33229位读者 | 引用在文章《随机分词浅探:从Viterbi Decoding到Viterbi Sampling》中,笔者提出了一种名为“Viterbi Sampling”的随机分词算法,它只是在求最优解的Viterbi Decoding基础上进行小修改,保留了Viterbi算法的简单快速的特点,相比于已有的Subword Regularization明显更加高效。不过,知乎上的读者 @鶴舞 指出,当前的采样算法可能会在多次二选一“稀释”了部分方案的出现概率,直接后果是原本分数最高的切分并不是以最高概率出现。
经过仔细思考后,笔者发现相应的问题确实存在,当时为了尽快得到一种新的采样算法,在细节上的思考和处理确实比较粗糙。为此,本文将进一步完善Viterbi Sampling算法,并证明完善后的算法在效果上可以跟Subword Regularization等价的。
问题分析
首先,我们来看一下评论原话:
配置不同的学习率,LoRA还能再涨一点?
By 苏剑林 | 2024-02-27 | 43663位读者 | 引用LoRA(Low-Rank Adaptation)是当前LLM的参数高效微调手段之一,此前我们在《梯度视角下的LoRA:简介、分析、猜测及推广》也有过简单讨论。这篇文章我们来学习LoRA的一个新结论:
给LoRA的两个矩阵分配不同的学习率,LoRA的效果还能进一步提升。
该结论出自最近的论文《LoRA+: Efficient Low Rank Adaptation of Large Models》(下称“LoRA+”)。咋看之下,该结论似乎没有什么特别的,因为配置不同的学习率相当于引入了新的超参数,通常来说只要引入并精调超参数都会有提升。“LoRA+”的特别之处在于,它从理论角度肯定了这个必要性,并且断定最优解必然是右矩阵的学习率大于左矩阵的学习率。简而言之,“LoRA+”称得上是理论指导训练并且在实践中确实有效的经典例子,值得仔细学习一番。
结论简析
假设预训练参数为$W_0 \in \mathbb{R}^{n\times m}$,如果使用全量参数微调,那么增量也是一个$n\times m$矩阵。为了降低参数量,LoRA将更新量约束为低秩矩阵,即设$W=W_0 + AB$,其中$A\in\mathbb{R}^{n\times r},B\in\mathbb{R}^{r\times m}$以及有$r\ll \min(n,m)$,用新的$W$替换模型原有参数,然后固定$W_0$不变,训练的时候只更新$A,B$,如下图所示:
$$\style{display: inline-block; width: 24ex; padding: 10ex 0; border: 1px solid #6C8EBF; background-color: #DAE8FC}{W_0\in\mathbb{R}^{n\times m}} \quad + \quad \style{display: inline-block; width: 8ex; padding: 10ex 0; border: 1px solid #D79B00; background-color: #FFE6CC}{A\in\mathbb{R}^{n\times r}}\quad\times\quad \style{display: inline-block; width: 24ex; padding: 3ex 0; border: 1px solid #D79B00; background-color: #FFE6CC}{B\in\mathbb{R}^{r\times m}}$$
生成扩散模型漫谈(二十三):信噪比与大图生成(下)
By 苏剑林 | 2024-04-17 | 29432位读者 | 引用上一篇文章《生成扩散模型漫谈(二十二):信噪比与大图生成(上)》中,我们介绍了通过对齐低分辨率的信噪比来改进noise schedule,从而改善直接在像素空间训练的高分辨率图像生成(大图生成)的扩散模型效果。而这篇文章的主角同样是信噪比和大图生成,但做到了更加让人惊叹的事情——直接将训练好低分辨率图像的扩散模型用于高分辨率图像生成,不用额外的训练,并且效果和推理成本都媲美直接训练的大图模型!
这个工作出自最近的论文《Upsample Guidance: Scale Up Diffusion Models without Training》,它巧妙地将低分辨率模型上采样作为引导信号,并结合了CNN对纹理细节的平移不变性,成功实现了免训练高分辨率图像生成。
思想探讨
我们知道,扩散模型的训练目标是去噪(Denoise,也是DDPM的第一个D)。按我们的直觉,去噪这个任务应该是分辨率无关的,换句话说,理想情况下低分辨率图像训练的去噪模型应该也能用于高分辨率图像去噪,从而低分辨率的扩散模型应该也能直接用于高分辨率图像生成。
通向最优分布之路:概率空间的最小化
By 苏剑林 | 2024-08-06 | 17260位读者 | 引用当要求函数的最小值时,我们通常会先求导函数然后寻找其零点,比较幸运的情况下,这些零点之一正好是原函数的最小值点。如果是向量函数,则将导数改为梯度并求其零点。当梯度零点不易求得时,我们可以使用梯度下降来逐渐逼近最小值点。
以上这些都是无约束优化的基础结果,相信不少读者都有所了解。然而,本文的主题是概率空间中的优化,即目标函数的输入是一个概率分布,这类目标的优化更为复杂,因为它的搜索空间不再是无约束的,如果我们依旧去求解梯度零点或者执行梯度下降,所得结果未必能保证是一个概率分布。因此,我们需要寻找一种新的分析和计算方法,以确保优化结果能够符合概率分布的特性。
对此,笔者一直以来也感到颇为头疼,所以近来决定”痛定思痛“,针对概率分布的优化问题系统学习了一番,最后将学习所得整理在此,供大家参考。
最近评论