什么时候多进程的加速比可以大于1?
By 苏剑林 | 2019-10-27 | 57948位读者 | 引用多进程或者多线程等并行加速目前已经不是什么难事了,相信很多读者都体验过。一般来说,我们会有这样的结论:多进程的加速比很难达到1。换句话说,当你用10进程去并行跑一个任务时,一般只能获得不到10倍的加速,而且进程越多,这个加速比往往就越低。
要注意,我们刚才说“很难达到1”,说明我们的潜意识里就觉得加速比最多也就是1。理论上确实是的,难不成用10进程还能获得20倍的加速?这不是天上掉馅饼吗?不过我前几天确实碰到了一个加速比远大于1的例子,所以在这里跟大家分享一下。
词频统计
我的原始任务是统计词频:我有很多文章,然后我们要对这些文章进行分词,最后汇总出一个词频表出来。一般的写法是这样的:
tokens = {}
for text in read_texts():
for token in tokenize(text):
tokens[token] = tokens.get(token, 0) + 1
这种写法在我统计THUCNews全部文章的词频时,大概花了20分钟。
百度实体链接比赛后记:行为建模和实体链接
By 苏剑林 | 2019-09-03 | 84375位读者 | 引用前几个月曾参加了百度的实体链接比赛,这是CCKS2019的评测任务之一,官方称之为“实体链指”,比赛于前几个星期完全结束。笔者最终的F1是0.78左右(冠军是0.80),排在第14名,成绩并不突出(唯一的特色是模型很轻量级,GTX1060都可以轻松跑起来),所以本文只是纯粹的记录过程,大牛们请一笑置之~
赛题介绍
所谓实体链接,主要指的是在已有一个知识库的情况下,预测输入query的某个实体对应知识库id。也就是说,知识库里边记录了很多实体,对于同一个名字的实体可能会有多个解释,每个解释用一个唯一id编号,我们要做的就是预测query中的实体究竟对应哪一个解释(id)。这是基于知识图谱的问答系统的必要步骤。
n维空间下两个随机向量的夹角分布
By 苏剑林 | 2019-11-13 | 132747位读者 | 引用昨天群里大家讨论到了$n$维向量的一些反直觉现象,其中一个话题是“一般$n$维空间下两个随机向量几乎都是垂直的”,这就跟二维/三维空间的认知有明显出入了。要从理论上认识这个结论,我们可以考虑两个随机向量的夹角$\theta$分布,并算算它的均值方差。
概率密度
首先,我们来推导$\theta$的概率密度函数。呃,其实也不用怎么推导,它是$n$维超球坐标的一个直接结论。
要求两个随机向量之间的夹角分布,很显然,由于各向同性,所以我们只需要考虑单位向量,而同样是因为各向同性,我们只需要固定其中一个向量,考虑另一个向量随机变化。不是一般性,考虑随机向量为
\begin{equation}\boldsymbol{x}=(x_1,x_2,\dots,x_n)\end{equation}
而固定向量为
\begin{equation}\boldsymbol{y}=(1,0,\dots,0)\end{equation}
抛开约束,增强模型:一行代码提升albert表现
By 苏剑林 | 2020-01-29 | 78439位读者 | 引用突破瓶颈,打造更强大的Transformer
By 苏剑林 | 2020-04-13 | 124655位读者 | 引用自《Attention is All You Need》一文发布后,基于Multi-Head Attention的Transformer模型开始流行起来,而去年发布的BERT模型更是将Transformer模型的热度推上了又一个高峰。当然,技术的探索是无止境的,改进的工作也相继涌现:有改进预训练任务的,比如XLNET的PLM、ALBERT的SOP等;有改进归一化的,比如Post-Norm向Pre-Norm的改变,以及T5中去掉了Layer Norm里边的beta参数等;也有改进模型结构的,比如Transformer-XL等;有改进训练方式的,比如ALBERT的参数共享等;...
以上的这些改动,都是在Attention外部进行改动的,也就是说它们都默认了Attention的合理性,没有对Attention本身进行改动。而本文我们则介绍关于两个新结果:它们针对Multi-Head Attention中可能存在建模瓶颈,提出了不同的方案来改进Multi-Head Attention。两篇论文都来自Google,并且做了相当充分的实验,因此结果应该是相当有说服力的了。
再小也不能小key_size
第一个结果来自文章《Low-Rank Bottleneck in Multi-head Attention Models》,它明确地指出了Multi-Head Attention里边的表达能力瓶颈,并提出通过增大key_size的方法来缓解这个瓶颈。
bert4keras在手,baseline我有:百度LIC2020
By 苏剑林 | 2020-04-02 | 91435位读者 | 引用百度的“2020语言与智能技术竞赛”开赛了,今年有五个赛道,分别是机器阅读理解、推荐任务对话、语义解析、关系抽取、事件抽取。每个赛道中,主办方都给出了基于PaddlePaddle的baseline模型,这里笔者也基于bert4keras给出其中三个赛道的个人baseline,从中我们可以看到用bert4keras搭建baseline模型的方便快捷与简练。
思路简析
这里简单分析一下这三个赛道的任务特点以及对应的baseline设计。
节省显存的重计算技巧也有了Keras版了
By 苏剑林 | 2020-04-29 | 48313位读者 | 引用不少读者最近可能留意到了公众号文章《BERT重计算:用22.5%的训练时间节省5倍的显存开销(附代码)》,里边介绍了一个叫做“重计算”的技巧,简单来说就是用来省显存的方法,让平均训练速度慢一点,但batch_size可以增大好几倍。该技巧首先发布于论文《Training Deep Nets with Sublinear Memory Cost》,其实在2016年就已经提出了,只不过似乎还没有特别流行起来。
探索
公众号文章提到该技巧在pytorch和paddlepaddle都有原生实现了,但tensorflow还没有。但事实上从tensorflow 1.8开始,tensorflow就已经自带了该功能了,当时被列入了tf.contrib
这个子库中,而从tensorflow 1.15开始,它就被内置为tensorflow的主函数之一,那就是tf.recompute_grad
。
找到tf.recompute_grad
之后,笔者就琢磨了一下它的用法,经过一番折腾,最终居然真的成功地用起来了,居然成功地让batch_size
从48增加到了144!然而,在继续整理测试的过程中,发现这玩意居然在tensorflow 2.x是失效的...于是再折腾了两天,查找了各种资料并反复调试,最终算是成功地补充了这一缺陷。
最后是笔者自己的开源实现:
该实现已经内置在bert4keras中,使用bert4keras的读者可以升级到最新版本(0.7.5+)来测试该功能。
Google新作Synthesizer:我们还不够了解自注意力
By 苏剑林 | 2020-05-25 | 88153位读者 | 引用深度学习这个箱子,远比我们想象的要黑。
写在开头
据说物理学家费曼说过一句话[来源]:“谁要是说他懂得量子力学,那他就是真的不懂量子力学。”我现在越来越觉得,这句话中的“量子力学”也可以替换为“深度学习”。尽管深度学习已经在越来越多的领域证明了其有效性,但我们对它的解释性依然相当无力。当然,这几年来已经有不少工作致力于打开深度学习这个黑箱,但是很无奈,这些工作基本都是“马后炮”式的,也就是在已有的实验结果基础上提出一些勉强能说服自己的解释,无法做到自上而下的构建和理解模型的原理,更不用说提出一些前瞻性的预测。
本文关注的是自注意力机制。直观上来看,自注意力机制算是解释性比较强的模型之一了,它通过自己与自己的Attention来自动捕捉了token与token之间的关联,事实上在《Attention is All You Need》那篇论文中,就给出了如下的看上去挺合理的可视化效果:
但自注意力机制真的是这样生效的吗?这种“token对token”的注意力是必须的吗?前不久Google的新论文《Synthesizer: Rethinking Self-Attention in Transformer Models》对自注意力机制做了一些“异想天开”的探索,里边的结果也许会颠覆我们对自注意力的认知。
最近评论