12 Nov

实数域上有限维可除代数只有四种

今天上近世代数课,老师谈到除环,举了一个非交换的除环的粒子,也就是四元数环,然后谈到“实数域上有限维可除代数只有4种”,也就是实数本身、复数、四元数和八元数(这里的可除代数就是除环)。这句话我听起来有点熟悉,又好像不大对劲。我记得在某本书上看过,定义为实数上的超复数系,如果满足模的积性,那么就只有以上四种。但是老师的那句话表明即使去掉模的积性,也只有四种。我自然以为老师记错了,跟老师辩论了一翻,然后回到宿舍又找资料,最终确定:实数域上有限维可除代数真的只有四种!下面简单谈谈我对这个问题的认识。

当然,这里不可能给出这个命题的证明,因为这个证明相当不简单,笔者目前也没有弄懂,但是粗略感觉一下为什么,还是有可能的。看到这个命题,我们一下子的感觉可能是:怎么会这么少!我们这里通过例子简单说明一下,确实不会多!

我们已经对复数系很熟悉了,也就是定义在实数上的向量空间,基为$\{1,i\}$,并且给定乘法为
$$1\times i=i \times 1=i,\quad 1^2=1,\quad i^2=-1$$

点击阅读全文...

12 Nov

特殊的通项公式:二次非线性递推

特殊的通项公式

对数学或编程感兴趣的读者,相信都已经很熟悉斐波那契数列了

0, 1, 1, 2, 3, 5, 8, 13, ...

它是由
$$a_{n+2}=a_{n+1}+a_n,\quad a_0=0,a_1=1$$
递推所得。读者或许已经见过它的通项公式
$$a_{n}=\frac{\sqrt{5}}{5} \cdot \left[\left(\frac{1 + \sqrt{5}}{2}\right)^{n} - \left(\frac{1 - \sqrt{5}}{2}\right)^{n}\right]$$
这里假设我们没有如此高的智商可以求出这个复杂的表达式出来,但是我们通过研究数列发现,这个数列越来越大时,相邻两项趋于一个常数,这个常数也就是(假设我们只发现了后面的数值,并没有前面的根式)
$$\beta=\frac{1 + \sqrt{5}}{2}=1.61803398\dots$$

点击阅读全文...

13 Feb

Designing GANs:又一个GAN生产车间

在2018年的文章里《f-GAN简介:GAN模型的生产车间》笔者介绍了f-GAN,并评价其为GAN模型的“生产车间”,顾名思义,这是指它能按照固定的流程构造出很多不同形式的GAN模型来。前几天在arxiv上看到了新出的一篇论文《Designing GANs: A Likelihood Ratio Approach》(后面简称Designing GANs或原论文),发现它在做跟f-GAN同样的事情,但走的是一条截然不同的路(不过最后其实是殊途同归),整篇论文颇有意思,遂在此分享一番。

f-GAN回顾

《f-GAN简介:GAN模型的生产车间》中我们可以知道,f-GAN的首要步骤是找到满足如下条件的函数$f$:

1、$f$是非负实数到实数的映射($\mathbb{R}^* \to \mathbb{R}$);

2、$f(1)=0$;

3、$f$是凸函数。

点击阅读全文...

17 Nov

[转载] 做数学一定要是天才吗?

(译自 陶哲轩 博客, 译者 liuxiaochuang)
(英文原文:Does one have to be a genius to do maths?)

这个问题的回答是一个大写的:不!为了达到对数学有一个良好的,有意义的贡献的目的,人们必须要刻苦努力;学好自己的领域,掌握一些其他领域的知识和工具;多问问题;多与其他数学工作者交流;要对数学有个宏观的把握。当然,一定水平的才智,耐心的要求,以及心智上的成熟性是必须的。但是,数学工作者绝不需要什么神奇的“天才”的基因,什么天生的洞察能力;不需要什么超自然的能力使自己总有灵感去出人意料的解决难题。

大众对数学家的形象有一个错误的认识:这些人似乎都使孤单离群的(甚至有一点疯癫)天才。他们不去关注其他同行的工作,不按常规的方式思考。他们总是能够获得无法解释的灵感(或者经过痛苦的挣扎之后突然获得),然后在所有的专家都一筹莫展的时候,在某个重大的问题上取得了突破的进展。这样浪漫的形象真够吸引人的,可是至少在现代数学学科中,这样的人或事是基本没有的。在数学中,我们的确有很多惊人的结论,深刻的定理,但是那都是经过几年,几十年,甚至几个世纪的积累,在很多优秀的或者伟大的数学家的努力之下一点一点得到的。每次从一个层次到另一个层次的理解加深的确都很不平凡,有些甚至是非常的出人意料。但尽管如此,这些成就也无不例外的建立在前人工作的基础之上,并不是全新的。(例如, Wiles 解决费马最后定理的工作,或者Perelman 解决庞加莱猜想的工作。)

点击阅读全文...

20 Jan

我是一个费曼迷

前几天在台湾购买(淘宝代购)的《费曼统计力学》和《费曼计算学》在今天到手了,至此,我的费曼著作收藏基本完成了。

费曼重力学、统计力学和计算学

费曼重力学、统计力学和计算学

我是一个费曼迷,为费曼的小飞侠人格所吸引,为费曼的物理才能所折服。因此,我甚至像普通人追星那样追崇费曼,收藏他的书籍,还有学习他所发明的物理。

点击阅读全文...

24 Nov

力的无穷分解与格林函数法

我小时候一直有个疑问:

直升机上的螺旋桨能不能用来挡雨?

一般的螺旋桨是若干个“条状”物通过旋转对称而形成的,也就是说,它并非一个面,按常理来说,它是没办法用来挡雨的。但是,如果在高速旋转的情况下,甚至假设旋转速度可以任意大,那么我们任意时刻都没有办法穿过它了,这种情况下,它似乎与一个实在的面无异?

力的无穷分解

力的离散化

力的离散化

当然,以上只是笔者小时候的一个“异想天开”的念头,读者不必较真。不过,这个疑问跟本文有什么联系呢?我们在研究振动问题之时,通常会遇到在变力的作用下的受迫振动问题,已知变力是时间的函数,比如$f(t)$,然而,虽然知道$f(t)$的具体形式,但是由于$f$的非线性性,加上外力之后的运动,不一定容易求解。然而,如果可以将一个变化的力分段为无数个无穷小时间内的恒力(冲力),那么我们就可以分段讨论我们要研究的运动,而通常来说,恒力的问题会比变力容易。将一个变力离散化,然后再取极限,那么是不是跟原来在变力下的运动是一样的呢?这跟文章开头的疑问有着类似的思想——离线的极限,跟连续本身,是不是等价的?

而让人惊喜的是,在通常的物理系统中,将力分段为无数个小区间内的恒力的做法,能够导致正确的答案,而且,这恰好是线性常微分方程的格林函数法。下面我们来分析这一做法。

点击阅读全文...

3 Dec

正弦级数和余弦级数

在数学分析的级数理论中,有一类常见的题目,其中涉及到
$$\cos\theta+\cos 2\theta+\dots+\cos n\theta\tag{1}$$

$$\sin\theta+\sin 2\theta+\dots+\sin n\theta\tag{2}$$
之类的正弦或者余弦级数的求和,主要是证明该和式有界。而为了证明这一点,通常是把和式的通项求出来。当然,该级数在物理中也有重要作用,它表示$n$个相同振子的合振幅。在我们的数学分析教材中,通常是将级数乘上一项$\sin\frac{\theta}{2}$,然后利用积化和差公式完成。诚然,如果仅限在实数范围内考虑,这有可能是唯一的推导技巧的。但是这样推导的运算过程本身不简单,而且也不利于记忆,在大二的时候我就为此感到很痛苦。前几天在看费曼的书的时候,想到了一种利用复数的推导技巧。很奇怪,这个技巧是如此简单——写出来显得这篇文章都有点水了——可是我以前居然一直没留意到!看来功力尚浅,需多多修炼呀。

点击阅读全文...

4 Dec

结果恒为整数的多项式

昨晚上初等数论的时候,有这么一道题

求证
$$\frac{1}{3}x^3+\frac{1}{5}x^5+\frac{7}{15}x$$
恒为整数,其中$x$是一个整数。

更一般地,可以得到
$$\sum_{p\in\mathbb{P}}\frac{1}{p}x^p + \left(1-\sum_{p\in\mathbb{P}}\frac{1}{p}\right)x$$
恒为整数,其中$\mathbb{P}$是有限个素数的集合,还有更多整数值函数问题。要证明这些函数的值恒为整数,可以通过同余分析,证明分子总能被分母整除。但是,更妙的、同时往往会更简单的方法是,将结果赋予必然为整数的意义——可以是计算上的,也可以是操作上的。

点击阅读全文...