9 Dec

受伤-守恒定律

今天上体育课的时候,BoJone与同学们正兴致勃勃地打着篮球,不料临近下课之时,同学猛一击(当然只是无意摩擦,没有恶意),我感到一阵猛疼——眼角处的肉破裂了!开始的一分钟内不停流血,奇怪的是到了校医室之后血就止住了(还没有经过任何处理,只是一直按住)。本以为只是小伤,简单处理就好,谁知校医说需要到外边的医院缝针,否则可能留疤毁容!!

既然如此严重,无奈只能服从了,简单处理伤口后就和母亲一起到了医院,缝了两针。由于接下来两天都得去医院消毒清洗伤口,所以干脆就请假回家了,周一再上学吧(貌似我在学校也仅仅是自学,没有多大区别^_^)...不过从受伤到现在,我还没有机会看到我的伤口究竟咋样...

点击阅读全文...

5 Apr

重提“旋转弹簧伸长”问题(变分解法)

感谢Awank-Newton读者的来信,本文于2013.01.30作了修正,主要是弹性势能的正负号问题。之前连续犯了两个错误,导致得出了正确答案。现在已经修正。参考《平衡态公理的修正与思考》

在下面的两篇文章中,BoJone已经介绍了这个“旋转弹簧伸长”的问题,并从两个角度提供了两种解答方法。前者列出了一道积分方程,然后再转变为微分方程来解;后者直接从弹性力学的角度来列出一道二阶微分方程,两者殊途同归。
http://kexue.fm/archives/782/

http://kexue.fm/archives/826/

今天,再经过一段时间的变分法涉猎后,BoJone尝试从变分的角度(总能量最小)来给出一种新的解法。同样设r为旋转达到平衡后弹簧上一点到旋转中心的距离,该点的线密度为$\lambda =\lambda (r)$,该点到中心的弹簧质量为$m=m(r)$,旋转前的长度为$l_0$,旋转平衡后的长度为$l_1$。由于弹簧旋转后已经达到了平衡状态,由平衡态公理(参看《自然极值》系列),平衡意味着总能量“动能-势能”取极值。

点击阅读全文...

1 May

无固定点的单摆运动

我们经常听说牛顿力学、相对论力学、量子力学等物理名词,也不时会听到“理论力学”。其实,“理论力学”这个名词是不大妥当的,因为这很容易会让人误认为这是一种新的力学体系。而事实上,理论力学并不是像牛顿力学那样是一种力学体系,而是一种研究力学的方法,而研究的对象在多数情况下依然是经典力学(翻开任意一本《理论力学》教程都不难发现这一点)。简单来讲,它把牛顿时代用微积分来研究力学的方法转变为了“变分”,变“常微分”为“偏微分”。看上去这有点“化简为繁”,但事实上这样的一个转变却带来了力学研究的一个巨大的飞跃。

说到这里,也许有的读者会感到害怕了:这里边肯定又涉及了各种高深莫测的高等数学方法,我们只能望而却步。的确,理论力学中的方法很是深奥,纵使是一个优秀的大学数理本科生,也可能要花上一年多时间才能学完一本《理论力学》。可是,通过最小作用量原理的方法去研究物理又显得如此地诱人。难道像我们这些初级人士就无法亲身体验理论力学方法给我们带来的巨大便利和不一样的体验了吗?

点击阅读全文...

28 May

两本通俗读物:混沌和对称

第一本:《天遇——混沌与稳定性的起源》

一个天体力学中的N体问题的研究,竟然发展出了如此多的现代数学理论,这不能不说是一个令人意外的事情。而事实上,N体问题至今仍是无解,这也许并非坏事,因为未被完全攻克,就意味着“N体问题”仍然还是一只“会下金蛋的母鸡”!

本书是普林斯顿文集之一。作者通过大众化的语言,叙述了天体力学和动力系统理论的历史发展,让读者感到其中那激动人心的故事。BoJone认为,要想了解分析动力学(尤其是天体力学)的发展,本书是一本难得的读物。作为混沌和稳定性理论的入门前读物,本书也是非常适合的。读历史的关键是:学会思想!

豆瓣:http://book.douban.com/subject/1048552/

点击阅读全文...

23 Jun

费曼积分法——积分符号内取微分(3)

由于自行车之旅的原因,这篇文章被搁置了一个星期,其实应该在一个星期前就把它写好的。这篇文章继续讲讲费曼积分法的一些例子。读者或许可以从这些不同类型的例子中,发现它应用的基本方向和方法,从而提升对它的认识。

例子2:

$$\int_0^{\infty} \frac{\sin x}{x}dx$$

这也是一种比较常见的类型,它的形式为$\int \frac{f(x)}{x}dx$,对于这种形式,我们的第一感觉就是将其改写成参数形式$\int \frac{f(ax)}{x}dx$,这样的目的很简单,就是把分母给消去了,与$\int \frac{x}{f(x)}dx$的求积思想是一致的。但是深入一点研究就会发现,纵使这样能够消去分母,使得第一次积分变得简单,但是到了第二次积分的时候,我们发现,它又会变回$\int \frac{f(x)}{x}dx$的积分,使我们不能继续进行下去,因此这个取参数的方法大多数情况下都是不行的。

点击阅读全文...

20 Jul

“未解之谜”:为何不讲中点矩形法则?

前言

在之前的一些文章中,我们已经指出过现行教材的一些毛病。比如主次不当(最明显的是那些一上来就讲线性方程组的线性代数教程)、缺乏直观性、缺少引导性等,我想其中最主要的原因可能是过于随大流了,别人怎么编我们也跟着怎么编,缺乏自己的观点和逻辑,因此导致一些常见的毛病就一直流传了下来。也许正因如此,就导致了有那么一种奇怪的现象——明明有一种计算量少的、精确度高一些的方法,教科书几乎从未提及;另外一种计算量稍大、精确度稍低的方法,但每一本同类教科书都讲述了它。不能不说这是一个“未解之谜”......

本文要讲的就是这样的两种方法,它们分别是用来求定积分近似值的“中点矩形法则”和“梯形法则”。对于后者我想绝大多数学习过微积分的朋友都会有印象,它就是那个几乎出现在了所有微积分教材的方法;而前者我相信不少读者都未曾听闻,但让人意外的是,它的计算量稍低,精确度却稍高。本文就简单介绍这两种方法,并且比较它们的精度。而本文的独特之处在于,证明过程沿用了《复分析:可视化方法》的思路,使用几何方法漂亮地估计误差!

我们的目标是在难以精确计算的情况下,通过一定的方法求出$\int_a^b f(x)dx$的近似值,这些方法基本上都是利用了积分即面积的思想。

两种不同的方法

点击阅读全文...

17 Aug

电偶极子浅探(1)

设想两个带有等量异号电荷的点电荷,它们之间的距离足够小,这样的一个模型被称为电偶极子(electric dipole)。我们研究电偶极子,主要是研究它在力学方面的性质。很多东西都可以用电偶极子来近似描述,比如一个小磁体周围的磁场,还有地球本身也可以近似看做一个偶极子来描述它的磁力情况,以及一些双原子分子的模型也被可以看做一个电偶极子模型,等等。在电偶极子模型中,两电荷的距离足够小,以至于我们忽略了一些关于距离的高次方项,只保留了线性部分,但对于物理探索来说,它已经足够精确,更重要的是,它足够简单,以至于我们可以容易把它清晰地描述出来。

电偶极子.PNG

我们先来研究电偶极子产生的电势。设它们各自的电荷量为q和-q,两者距离为ε,根据库仑定律,一个点电荷产生的电势,正比于该电荷的电荷量,同时反比于到该点电荷的距离。那么,一个电偶极子产生的电势为
$U=C(\frac{q}{r}+\frac{-q}{|\vec{r}-\vec{\varepsilon}|})$————(1)

点击阅读全文...

18 Aug

电偶极子浅探(2)

在上一篇文章中,我们已经得到了电偶极子的等势面和电场线方程,这应该可以让我们对电偶极子的力场情况有个大致的了解了。当然,我们还是希望能够求出在这样的一个受力情况下,一个带电粒子是如何运动的。简单起见,在下面的探讨中,我们假定带电粒子的质量和电荷量均为1,至于电荷的正负,可以通过改变在$U=-\frac{k \cos\theta}{r^2}$中的k值的正负来控制。我们使用的工具依旧是理论力学中的欧拉-拉格朗日方程。

也许不少读者始终对公式感到头疼,更不用说是博大精深的理论力学了。但是请相信我,如果你花一点点心思去弄懂用变分法研究力学(或其他物理系统,但我目前只会用于力学)的基本思路和步骤,那么对你的物理研究是大有裨益的。因为在我眼中,学习了一丁点的理论力学知识后,我看到的只有物理的简洁与和谐。有兴趣的朋友可以看看我的那几篇《自然极值》等相关文章。

首先写出动能的表达式:$T=\frac{1}{2} (\dot{r}^2+r^2 \dot{\theta}^2)$

还有势能:$U=-\frac{k \cos\theta}{r^2}$

点击阅读全文...