开始学习数学软件Scilab
By 苏剑林 | 2012-09-28 | 39867位读者 | 引用其实很早之前我就想学习一款数学软件的使用,以前很感兴趣的是mathematica,也玩弄过一阵子,但毕竟在高中没有多大需要,也就没有坚持下来。更重要的是,这些软件都是要收费的。上了大学后,听了师兄姐对数学建模的讲述,发现他们基本上也是用mathematica或者matlab的,但这两个软件都是要收费的,我不大想用破解版本。既然我都已经用上了ubuntu了,那么我就该好好利用它。据说命令跟matlab很相似的软件是scilab,还有octave,不同的是这些都是开源免费的。
出于熟悉代码操作和数学软件编程的目的,我选择了学习scilab。虽然网上说octave与matlab的相似程度更高,但是我感觉scilab比octave用的更广一些,所以就用它。所谓“一理通百理明”,先专心学好一个。
下面是我编写的第一个scialb程序,利用威尔逊方法来进行素性测试。这个代码的主要目的是练习条件语句和循环语句,以及一些输出输入的技巧而已。程序本身比较丑陋。
//我的第一个scilab程序
//完成于2012.09.27
label1=['p:';]; //定义标签
B=x_mdialog(['本程序使用威尔逊方法判断进行素数测试。';'请输入要判断的数'],label1,['127';]); //输入框
p=evstr(B(1)); //提取输入框里边的数字进行赋值
i=1;
j=1;
q=p-1;
while i<q
j=j*i;
j=modulo(j,p);//这个是模函数。
i=i+1;
end
if j==1
messagebox(['这是一个素数';],['测试结果']); //输出,其中后边的“测试结果”是输入框的标题
else
messagebox(['这是一个合数';],['测试结果']);
end
《环球科学》:超越费曼图
By 苏剑林 | 2012-11-26 | 19820位读者 | 引用虽然文章的大部分内容我都还无法弄懂,但是这里边讲述的振奋人心的内容让我决定把它转载过来。文章说,将大自然的各种力统一起来,或许没有物理学家原来所想的那么困难。
撰文∕ 伯尔尼(Zvi Bern)、狄克森(Lance J. Dixon)寇索尔(David A. Kosower)
翻译∕ 高涌泉(台湾大学物理系教授)
提供/ 科学人(Scientific American繁体中文版)
重点提要
物理学家对于粒子碰撞的了解,最近经历了一场宁静革命。知名物理学家费曼所引入的观念对于很多应用而言已到达极限。作者与合作者已经发展出新的方法。
物理学家利用新方法,可以更可靠地描述在大强子对撞机(LHC)那种极端条件下普通粒子的行为,这将帮助实验学家寻找新粒子与新作用力。
新方法还有更为深刻的应用:它让一种于1980年代被物理学家放弃的统一理论有了新生命,重力看起来像是双份的强核力一起作用。
春天某个晴朗的日子,本文作者狄克森从英国伦敦地铁的茂恩都站进入地铁,想前往希斯洛机场。伦敦地铁每天有300万名乘客,他瞧着其中一位陌生人,无聊地想着:这位老兄会从温布尔登站离开地铁的机率有多大?由于此人可能搭上任何一条地铁路线,所以该如何推算这个机率呢?他想了一会,领悟到这个问题其实跟粒子物理学家所面对的麻烦很像,那就是该如何预测现代高能实验中粒子碰撞的后果。
欧洲核子研究组织(CERN)的大强子对撞机(LHC)是这个时代最重要的探索实验;它让质子以近乎光速前进并相撞,然后研究碰撞后的碎片。我们知道建造对撞机及侦测器得用上最尖端的技术,然而较不为人知的是,解释侦测器的发现同样也是极为困难的挑战。乍看之下,它不应该那么困难才对,因为基本粒子的标准模型早已确立,理论学家也一直用此模型来预测实验的结果,而且理论预测所依赖的是著名物理学家费曼(Richard P. Feynman)早在60多年前就发展出来的计算技巧,每位粒子物理学家在研究生阶段都学过费曼的技巧;关于粒子物理的每本科普书、每篇科普文章,也都借用了费曼的概念。
费曼路径积分思想的发展(一)
By 苏剑林 | 2012-12-26 | 28769位读者 | 引用注:这是郝刘祥前辈的一篇论文,98年的时候发表在《自然辩证法通讯》上,里边讲述了费曼以及路径积分的相关故事。我从网上下载下来,原文是很粗糙的pdf文件,我特意将它转化为网页文件,供大家欣赏。有些公式很模糊,所以我已经到图书馆查找了原文,但是由于作者非理论物理专业人员,还不确定部分公式是否正确,请读者慎读。原文较长,将分开几篇来发。如果涉及到版权问题,请作者告之(bojone@spaces.ac.cn),我将会尽快处理掉。
自然辩证法通讯(JOURNAL OF DIALECTICS OF NATURE)
第二十卷总115期,1998第3期
郝刘祥
摘要:该文首先阐述了 Richard Feynman为解决经典电动力学的发散问题而做的艰苦努力,进而论述了这种努力的副产品何以使他偏爱作用量表述,以及他是如何在Dirac文章的启发下得到非相对论量子力学的第三种形式--作用量量子化方案的。文章的第三部分叙述了费曼将其方案推广到相对论情形的尝试和费曼图的由来。最后,该文试图就路径积分方法在量子场论等领域中的广泛应用以及费曼对量子场论的重大疑惑作一简要的说明。
关键词:费曼,作用量,几率幅,路径积分
新科学家:割裂时间空间,统一相对论量子论
By 苏剑林 | 2013-01-16 | 28055位读者 | 引用这篇文章源于《新科学家》2010年8月7日刊,它介绍了物理学家Horava为了统一相对论和量子力学,把广义相对论的时空联系割裂的尝试。在相对论中,时间和空间结合成了不可分割的整体。而现在,有物理学家却要把时间与空间分开,来建立让广义相对论和量子力学相调和的统一理论。我对这个理论挺感兴趣的,当然,我还没有能力弄懂它。只是它符合了我们大多数人的一个直觉,就是时间总有跟空间不同的地方,它们之间不应该完全等同起来。不过,事实如何,只有未来的实验能够严重了。
本文并没有官方的中文译文,现载的译文来自“译言网”。译文有一些翻译不大正当的地方,由于时间限制,无法一一修正,但是我觉得对于理解本文内容已经足够了。如果有疑问,不妨参考后边的英文原文,并在此提出与大家讨论。
对爱因斯坦的反思:空间-时间耦合的物理数学的终结
纠结于融合引力和量子力学的物理学家们正向着一个受到铅笔芯启发的理论欢呼雀跃,这个理论可以很简单地让他们取得成功。
它曾是一个改变了我们思考空间和时间的方式的报告。那一年是1908年,德国数学家赫尔曼-闵可夫斯基正尝试着理解爱因斯坦火热的新思想——即我们现在所熟知的狭义相对论,它描述当物质运动很快时它们是如何收缩以及时间是如何扭曲的。“从此独立的空间和时间将注定淡出到纯粹的虚幻中,”闵可夫斯基说道:“而只有两者的统一才能保证一个独立的现实世界。”
很早以前我就对这个问题感兴趣了,但是一直搁置着,没有怎么研究。最近在阅读《引力与时空》的“潮汐力”那一节时重新回到了这个问题上,决定写点什么东西。在这里不深究流体静力平衡的定义,顾名思义地理解,它就是流体在某个特定的力场下所达到的平衡状态。流体静力学告诉我们:
达到流体静力平衡时,流体的面必定是一个等势面。
这是为什么呢?我们从数学的角度来简单分析一下:只考虑二维情况,假如等势面方程是$U(x,y)=C$,那么两边微分就有
$$0=dU=\frac{\partial U}{\partial x}dx+\frac{\partial U}{\partial y}dy=(\frac{\partial U}{\partial x},\frac{\partial U}{\partial y})\cdot (dx,dy)$$
这意味着向量$(\frac{\partial U}{\partial x},\frac{\partial U}{\partial y})$和向量$(dx,dy)$是垂直的,前者便是力的函数,后者就是一个切向量(三维就是一个切平面)。也就是说合外力必然和流体面垂直,这样才能提供一个相等的方向相反的内力让整个结构体系处于平衡状态!
不求珍馐百味,但愿开水白菜
By 苏剑林 | 2014-03-15 | 41485位读者 | 引用从费马大定理谈起(三):高斯整数
By 苏剑林 | 2014-08-16 | 47675位读者 | 引用为了拓展整数的概念,我们需要了解关于环和域这两个代数结构,这些知识在网上或者相应的抽象代数教程中都会有。抽象地提出这两个代数结构,是为了一般地处理不同的数环、数域中的性质。在自然数集$\mathbb{N}$中,可以很方便定义和比较两个数字的大小,并且任意一个自然数的子集,都存在最小元素,这两点综合起来,我们就说$\mathbb{N}$是“良序”的(这也是数学归纳法的基础)。在良序的结构中,很多性质的证明变得很简单,比如算术基本定理。然而,一般的数环、数域并没有这样的“良序”,比如任意两个复数就不能比较大小。因此,一般的、不基于良序的思想就显得更为重要了。
环和域
关于环(Ring)的定义,可以参考维基百科上面的“环(代数)”条目。简单来说,环指的是这样一个集合,它的元素之间可以进行加法和乘法,并满足一些必要的性质,比如运算封闭性、加法可交换性等。而数论中大多数情况下研究的是数环,它指的是集合是数集的情况,并且通常来说,元素间的加法和乘法就是普通的数的加法和乘法。比如所有的实整数就构成一个数环$\mathbb{Z}$,这个数环是无限的;所有的偶整数也构成一个数环$2\mathbb{Z}$;对于素数$p$,在模$p$之下,数集$\{0,1,2,\dots,p-1\}$也构成了一个环,更特别的,它还是一个数域。
从费马大定理谈起(八):艾森斯坦整数
By 苏剑林 | 2014-08-30 | 42002位读者 | 引用是时候向n=3进军了,为了证明这个情况,我们需要一个新的数环:艾森斯坦整数(Eisenstein Integer)。艾森斯坦是德国著名数学家,同时代的高斯曾经评价:“只有三个划时代的数学家:阿基米德,牛顿和艾森斯坦。”足见艾森斯坦的成就斐然。事实上,阅读费马大定理的研究史,同时也是在阅读数学名人录——没有超高的数学,几乎不可能在费马大定理中有所建树。
基本定义
跟高斯整数一样,艾森斯坦整数也是复整数的一种,其中,高斯整数是以1和$i$为基,$i$其实是一个四次单位根,也就是$x^4-1=0$的一个非实数根,因此高斯整数也叫做四次分圆整数;而艾森斯坦整数以1和$\omega$为基,$\omega$是三次单位根,也就是$x^3-1=0$的一个非实数根。任意一个艾森斯坦整数都可以记为$a+b\omega,\,a,b\in\mathbb{Z}$,艾森斯坦整数环记为$\mathbb{Z}[\omega]$,也称为三次分圆整数环。
最近评论