17 May

变分自编码器(七):球面上的VAE(vMF-VAE)

《变分自编码器(五):VAE + BN = 更好的VAE》中,我们讲到了NLP中训练VAE时常见的KL散度消失现象,并且提到了通过BN来使得KL散度项有一个正的下界,从而保证KL散度项不会消失。事实上,早在2018年的时候,就有类似思想的工作就被提出了,它们是通过在VAE中改用新的先验分布和后验分布,来使得KL散度项有一个正的下界。

该思路出现在2018年的两篇相近的论文中,分别是《Hyperspherical Variational Auto-Encoders》《Spherical Latent Spaces for Stable Variational Autoencoders》,它们都是用定义在超球面的von Mises–Fisher(vMF)分布来构建先后验分布。某种程度上来说,该分布比我们常用的高斯分布还更简单和有趣~

KL散度消失

我们知道,VAE的训练目标是
\begin{equation}\mathcal{L} = \mathbb{E}_{x\sim \tilde{p}(x)} \Big[\mathbb{E}_{z\sim p(z|x)}\big[-\log q(x|z)\big]+KL\big(p(z|x)\big\Vert q(z)\big)\Big]
\end{equation}

点击阅读全文...

10 Oct

用狄拉克函数来构造非光滑函数的光滑近似

在机器学习中,我们经常会碰到不光滑的函数,但我们的优化方法通常是基于梯度的,这意味着光滑的模型可能更利于优化(梯度是连续的),所以就有了寻找非光滑函数的光滑近似的需求。事实上,本博客已经多次讨论过相关主题,比如《寻求一个光滑的最大值函数》《函数光滑化杂谈:不可导函数的可导逼近》等,但以往的讨论在方法上并没有什么通用性。

不过,笔者从最近的一篇论文《SAU: Smooth activation function using convolution with approximate identities》学习到了一种比较通用的思路:用狄拉克函数来构造光滑近似。通用到什么程度呢?理论上有可数个间断点的函数都可以用它来构造光滑近似!个人感觉还是非常有意思的。

点击阅读全文...

24 May

也来盘点一些最近的非Transformer工作

大家最近应该多多少少都被各种MLP相关的工作“席卷眼球”了。以Google为主的多个研究机构“奇招频出”,试图从多个维度“打击”Transformer模型,其中势头最猛的就是号称是纯MLP的一系列模型了,让人似乎有种“MLP is all you need”时代到来的感觉。

这一顿顿让人眼花缭乱的操作背后,究竟是大道至简下的“返璞归真”,还是江郎才尽后的“冷饭重炒”?让我们也来跟着这股热潮,一起盘点一些最近的相关工作。

五月人倍忙

怪事天天有,五月特别多。这个月以来,各大机构似乎相约好了一样,各种非Transformer的工作纷纷亮相,仿佛“忽如一夜春风来,千树万树梨花开”。单就笔者在Arxiv上刷到的相关论文,就已经多达七篇(一个月还没过完,七篇方向极其一致的论文),涵盖了NLP和CV等多个任务,真的让人应接不暇:

点击阅读全文...

2 Jun

我们可以无损放大一个Transformer模型吗(一)

看了标题,可能读者会有疑惑,大家不都想着将大模型缩小吗?怎么你想着将小模型放大了?其实背景是这样的:通常来说更大的模型加更多的数据确实能起得更好的效果,然而算力有限的情况下,从零预训练一个大的模型时间成本太大了,如果还要调试几次参数,那么可能几个月就过去了。

这时候“穷人思维”就冒出来了(土豪可以无视):能否先训练一个同样层数的小模型,然后放大后继续训练?这样一来,预训练后的小模型权重经过放大后,就是大模型一个起点很高的初始化权重,那么大模型阶段的训练步数就可以减少了,从而缩短整体的训练时间。

那么,小模型可以无损地放大为一个大模型吗?本文就来从理论上分析这个问题。

含义

有的读者可能想到:这肯定可以呀,大模型的拟合能力肯定大于小模型呀。的确,从拟合能力角度来看,这件事肯定是可以办到的,但这还不是本文关心的“无损放大”的全部。

点击阅读全文...

17 Jun

对比学习可以使用梯度累积吗?

在之前的文章《用时间换取效果:Keras梯度累积优化器》中,我们介绍过“梯度累积”,它是在有限显存下实现大batch_size效果的一种技巧。一般来说,梯度累积适用的是loss是独立同分布的场景,换言之每个样本单独计算loss,然后总loss是所有单个loss的平均或求和。然而,并不是所有任务都满足这个条件的,比如最近比较热门的对比学习,每个样本的loss还跟其他样本有关。

那么,在对比学习场景,我们还可以使用梯度累积来达到大batch_size的效果吗?本文就来分析这个问题。

简介

一般情况下,对比学习的loss可以写为
\begin{equation}\mathcal{L}=-\sum_{i,j=1}^b t_{i,j}\log p_{i,j} = -\sum_{i,j=1}^b t_{i,j}\log \frac{e^{s_{i,j}}}{\sum\limits_j e^{s_{i,j}}}=-\sum_{i,j=1}^b t_{i,j}s_{i,j} + \sum_{i=1}^b \log\sum_{j=1}^b e^{s_{i,j}}\label{eq:loss}\end{equation}
这里的$b$是batch_size;$t_{i,j}$是事先给定的标签,满足$t_{i,j}=t_{j,i}$,它是一个one hot矩阵,每一列只有一个1,其余都为0;而$s_{i,j}$是样本$i$和样本$j$的相似度,满足$s_{i,j}=s_{j,i}$,一般情况下还有个温度参数,这里假设温度参数已经整合到$s_{i,j}$中,从而简化记号。模型参数存在于$s_{i,j}$中,假设为$\theta$。

点击阅读全文...

29 Jun

UniVAE:基于Transformer的单模型、多尺度的VAE模型

大家都知道,Transformer的$\mathcal{O}(n^2)$复杂度是它的“硬伤”之一。不过凡事有弊亦有利,$\mathcal{O}(n^2)$的复杂度也为Transformer带来很大的折腾空间,我们可以灵活地定制不同的attention mask,来设计出不同用途的Transformer模型来,比如UniLMK-BERT等。

本文介绍笔者构思的一个能用于文本的UniVAE模型,它沿用类似UniLM的思路,将VAE做到了一个Transformer模型里边,并且还具备多尺度特性~

UniAE式Attention关联示意图

UniAE式Attention关联示意图

点击阅读全文...

31 Oct

bert4keras在手,baseline我有:CLUE基准代码

CLUE(Chinese GLUE)是中文自然语言处理的一个评价基准,目前也已经得到了较多团队的认可。CLUE官方Github提供了tensorflow和pytorch的baseline,但并不易读,而且也不方便调试。事实上,不管是tensorflow还是pytorch,不管是CLUE还是GLUE,笔者认为能找到的baseline代码,都很难称得上人性化,试图去理解它们是一件相当痛苦的事情。

所以,笔者决定基于bert4keras实现一套CLUE的baseline。经过一段时间的测试,基本上复现了官方宣称的基准成绩,并且有些任务还更优。最重要的是,所有代码尽量保持了清晰易读的特点,真·“Deep Learning for Humans”。

代码简介

下面简单介绍一下该代码中各个任务baseline的构建思路。在阅读文章和代码之前,请读者自行先观察一下每个任务的数据格式,这里不对任务数据进行详细介绍。

点击阅读全文...

22 Jul

概率视角下的线性模型:逻辑回归有解析解吗?

我们知道,线性回归是比较简单的问题,它存在解析解,而它的变体逻辑回归(Logistic Regression)却没有解析解,这不能不说是一个遗憾。因为逻辑回归虽然也叫“回归”,但它实际上是用于分类问题的,而对于很多读者来说分类比回归更加常见。准确来说,我们说逻辑回归没有解析解,说的是“最大似然估计下逻辑回归没有解析解”。那么,这是否意味着,如果我们不用最大似然估计,是否能找到一个可用的解析解呢?

逻辑回归示意图

逻辑回归示意图

本文将会从非最大似然的角度,推导逻辑回归的一个解析解,简单的实验表明它效果不逊色于梯度下降求出来的最大似然解。此外,这个解析解还易于推广到单层Softmax多分类模型。

点击阅读全文...