4 May

记录一次半监督的情感分析

本文是一次不怎么成功的半监督学习的尝试:在IMDB的数据集上,用随机抽取的1000个标注样本训练一个文本情感分类模型,并且在余下的49000个测试样本中,测试准确率为73.48%。

思路

本文的思路来源于OpenAI的这篇文章:
《OpenAI新研究发现无监督情感神经元:可直接调控生成文本的情感》

文章里边介绍了一种无监督(实际上是半监督)做情感分类的模型的方法,并且实验效果很好。然而文章里边的实验很庞大,对于个人来说几乎不可能重现(在4块Pascal GPU花了1个月时间训练)。不过,文章里边的思想是很简单的,根据里边的思想,我们可以做个“山寨版”的。思路如下:

我们一般用深度学习做情感分类,比较常规的思路就是Embedding层+LSTM层+Dense层(Sigmoid激活),我们常说的词向量,相当于预训练了Embedding层(这一层的参数量最大,最容易过拟合),而OpenAI的思想就是,为啥不连LSTM层一并预训练了呢?预训练的方法也是用语言模型来训练。当然,为了使得预训练的结果不至于丢失情感信息,LSTM的隐藏层节点要大一些。

点击阅读全文...

17 May

如何“扒”站?手把手教你爬百度百科~

最近有需求要爬一些儿童故事类的语料用来训练词向量,因此找了一些童话故事网把整站的童话文章爬了下来。下面分享一下用Python实现的这个过程,并把之前爬取百度百科的经验,结合着分享出来。本教程适合于以下需求:需要遍历爬取指定的网站、并且指定网站没有反爬虫措施。在这种前提之下,所考验我们的仅仅是遍历算法编程技巧了。

假设

再次表明我们的假设:

1、需要遍历整个网站来爬取我们需要的信息;

2、网站没有反爬虫措施;

3、网站的所有页面,总可以通过网站首页,逐步点击超链接来到达。

点击阅读全文...

27 May

【不可思议的Word2Vec】5. Tensorflow版的Word2Vec

本文封装了一个比较完整的Word2Vec,其模型部分使用tensorflow实现。本文的目的并非只是再造一次Word2Vec这个轮子,而是通过这个例子来熟悉tensorflow的写法,并且测试笔者设计的一种新的softmax loss的效果,为后面研究语言模型的工作做准备。

不同的地方

Word2Vec的基本的数学原理,请移步到《【不可思议的Word2Vec】 1.数学原理》一文查看。本文的主要模型还是CBOW或者Skip-Gram,但在loss设计上有所不同。本文还是使用了完整的softmax结构,而不是huffmax softmax或者负采样方案,但是在训练softmax时,使用了基于随机负采样的交叉熵作为loss。这种loss与已有的nce_loss和sampled_softmax_loss都不一样,这里姑且命名为random softmax loss。

另外,在softmax结构中,一般是$\text{softmax}(Wx+b)$这样的形式,考虑到$W$矩阵的形状事实上跟词向量矩阵的形状是一样的,因此本文考虑了softmax层与词向量层共享权重的模型(这时候直接让$b$为0),这种模型等效于原有的Word2Vec的负采样方案,也类似于glove词向量的词共现矩阵分解,但由于使用了交叉熵损失,理论上收敛更快,而且训练结果依然具有softmax的预测概率意义(相比之下,已有的Word2Vec负样本模型训练完之后,最后模型的输出值是没有意义的,只有词向量是有意义的。)。同时,由于共享了参数,因此词向量的更新更为充分,读者不妨多多测试这种方案。

点击阅读全文...

6 Jun

通用爬虫探索(一):适用一般网站的爬虫

这是笔者参加今年的泰迪杯C题的论文简化版。虽然最后只评上了一个安慰奖,但个人感觉里边有些思路对爬虫工作还是有些参加价值的。所以还是放出来供大家参考一下。

简介

一个爬虫可以分为两个步骤:1.把网页下载下来;2.从网页中把所需要的信息抽取出来。这两个步骤都存在相应的技术难点。对于第一个步骤,难度在于如何应对各大网站的反爬虫措施,如访问频率过高则封IP或者给出验证码等,这需要根据不同网站的不同反爬虫措施来设计,理论上不存在通用的可能性。对于第二个步骤,传统的做法是设计对应的正则表达式,随着网站设计上日益多样化,正则表达式的写法也相应变得困难。

显然,想要得到一个通用的爬虫方案,用传统的正则表达式的方案是相当困难的。但如果我们跳出正则表达式的思维局限,从全局的思维来看网站,结合DOM树来解析,那么可以得到一个相当通用的方案。因此,本文的主要内容,是围绕着爬虫的第二个步骤进行展开。本文的工作分为两个部分进行:首先,提出了一个适用于一般网站的信息抽取方案,接着,将这个方案细化,落实到论坛的信息抽取上。

点击阅读全文...

6 Jun

通用爬虫探索(二):落实到论坛爬取上

前述的方案,如果爬取的页面仅仅有单一的有效区域,如博客页、新闻页等,那么基本上来说已经足够了。但是,诸如像论坛这样的具有比较明显的层次划分的网站,我们需要进一步细分。因为经过上述步骤,我们虽然能够把有效文本提取出来,但结果是把所有文本放在一块了。

深度优先

而为了给内容进一步“分块”,我们还需要利用DOM树的位置信息。如上一篇的DOM树图,我们需要给每个节点和叶子都编号,即我们需要一个遍历DOM树的方式。这里我们采用“深度优先”的方案。

深度优先搜索算法(英语:Depth-First-Search,简称DFS)是一种用于遍历或搜索树或图的算法。沿着树的深度遍历树的节点,尽可能深的搜索树的分支。当节点v的所在边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。如果还存在未被发现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止。

点击阅读全文...

24 Jul

基于Xception的腾讯验证码识别(样本+代码)

去年的时候,有幸得到网友提供的一批腾讯验证码样本,因此也研究了一下,过程记录在《端到端的腾讯验证码识别(46%正确率)》中。

后来,这篇文章引起了不少读者的兴趣,有求样本的,有求模型的,有一起讨论的,让我比较意外。事实上,原来的模型做得比较粗糙,尤其是准确率难登大雅之台,参考价值不大。这几天重新折腾了一下,弄了个准确率高一点的模型,同时也把样本公开给大家。

模型的思路跟《端到端的腾讯验证码识别(46%正确率)》是一样的,只不过把CNN部分换成了现成的Xception结构,当然,读者也可以换VGG、Resnet50等玩玩,事实上对验证码识别来说,这些模型都能够胜任。我挑选Xception,是因为它层数不多,模型权重也较小,我比较喜欢而已。

代码

点击阅读全文...

3 Sep

开学啦!咱们来做完形填空~(讯飞杯)

前言

从今年开始,CCL会议将计划同步举办评测活动。笔者这段时间在一创业公司实习,公司也报名参加这个评测,最后实现上就落在我这里,今年的评测任务是阅读理解,名曰《第一届“讯飞杯”中文机器阅读理解评测》。虽说是阅读理解,但事实上任务比较简单,是属于完形填空类型的,即一段材料中挖了一个空,从上下文中选一个词来填入这个空中。最后我们的模型是单系统排名第6,验证集准确率为73.55%,测试集准确率为75.77%,大家可以在这里观摩排行榜。(“广州火焰信息科技有限公司”就是文本的模型)

事实上,这个数据集和任务格式是哈工大去年提出的,所以这次的评测也是哈工大跟科大讯飞一起联合举办的。哈工大去年的论文《Consensus Attention-based Neural Networks for Chinese Reading Comprehension》就研究过另一个同样格式但不同内容的数据集,是用通用的阅读理解模型做的(通用的阅读理解是指给出材料和问题,从材料中找到问题的答案,完形填空可以认为是通用阅读理解的一个非常小的子集)。

虽然,在这次评测任务的介绍中,评测方总有意无意地引导我们将这个问题理解为阅读理解问题。但笔者觉得,阅读理解本身就难得多,这个就一完形填空,只要把它作为纯粹的完形填空题做就是了,所以本文仅仅是采用类似语言模型的做法来做。这种做法的好处是思路简明直观,计算量低(在笔者的GTX1060上可以跑到batch size为160),便于实验。

模型

回到模型上,我们的模型其实比较简单,完全紧扣了“从上下文中选一个词来填空”这一思想,示意图如下。

完形填空模型

完形填空模型

点击阅读全文...

16 Jul

Linux下的误删大坑与简单的恢复技巧

警告

以下内容包含诸多高危动作,请勿随意模仿。未成年人请在父母的陪同下观看~(^_^)

自杀式

Linux系统(下面内容同时适用于Mac OS)以开源自由闻名,然而有些时候它也开放过头了,而笔者也被它无比开发的特性坑了好几次(当然,主要是笔者使用习惯不好),遂总结分享,供大家娱乐。

最经典的例子就是,通过以下命令就可以实现“自杀”:

sudo rm / -rf

这就把你的Linux系统给毁了。显然,如果是在Windows中,这相当于在操作系统中格式化系统盘,这是绝对不允许的。

点击阅读全文...