20 Mar

《为什么现在的LLM都是Decoder-only的架构?》FAQ

上周笔者写了《为什么现在的LLM都是Decoder-only的架构?》,总结了一下我在这个问题上的一些实验结论和猜测。果然是热点问题流量大,paperweekly的转发没多久阅读量就破万了,知乎上点赞数也不少。在几个平台上,陆陆续续收到了读者的一些意见或者疑问,总结了其中一些有代表性的问题,做成了本篇FAQ,希望能进一步帮助大家解决疑惑。

回顾

《为什么现在的LLM都是Decoder-only的架构?》中,笔者对GPT和UniLM两种架构做了对比实验,然后结合以往的研究经历,猜测了如下结论:

1、输入部分的注意力改为双向不会带来收益,Encoder-Decoder架构的优势很可能只是源于参数翻倍;

2、双向注意力没有带来收益,可能是因为双向注意力的低秩问题导致效果下降。

所以,基于这两点推测,我们得到结论:

在同等参数量、同等推理成本下,Decoder-only架构是最优选择。

点击阅读全文...

20 Jul

语言模型输出端共享Embedding的重新探索

预训练刚兴起时,在语言模型的输出端重用Embedding权重是很常见的操作,比如BERT、第一版的T5、早期的GPT,都使用了这个操作,这是因为当模型主干部分不大且词表很大时,Embedding层的参数量很可观,如果输出端再新增一个独立的同样大小的权重矩阵的话,会导致显存消耗的激增。不过随着模型参数规模的增大,Embedding层的占比相对变小了,加之《Rethinking embedding coupling in pre-trained language models》等研究表明共享Embedding可能会有些负面影响,所以现在共享Embedding的做法已经越来越少了。

本文旨在分析在共享Embedding权重时可能遇到的问题,并探索如何更有效地进行初始化和参数化。尽管共享Embedding看起来已经“过时”,但这依然不失为一道有趣的研究题目。

点击阅读全文...

26 Sep

脑洞大开:非线性RNN居然也可以并行计算?

近年来,线性RNN由于其可并行训练以及常数推理成本等特性,吸引了一定研究人员的关注(例如笔者之前写的《Google新作试图“复活”RNN:RNN能否再次辉煌?》),这让RNN在Transformer遍地开花的潮流中仍有“一席之地”。然而,目前看来这“一席之地”只属于线性RNN,因为非线性RNN无法高效地并行训练,所以在架构之争中是“心有余而力不足”。

不过,一篇名为《Parallelizing Non-Linear Sequential Models over the Sequence Length》的论文有不同的看法,它提出了一种迭代算法,宣传可以实现非线性RNN的并行训练!真有如此神奇?接下来我们一探究竟。

求不动点

原论文对其方法做了非常一般的介绍,而且其侧重点是PDE和ODE,这里我们直接从RNN入手。考虑常见的简单非线性RNN:
\begin{equation}x_t = \tanh(Ax_{t-1} + u_t)\label{eq:rnn}\end{equation}

点击阅读全文...

22 Oct

从梯度最大化看Attention的Scale操作

我们知道,Scaled Dot-Product Attention的Scale因子是$\frac{1}{\sqrt{d}}$,其中$d$是$\boldsymbol{q},\boldsymbol{k}$的维度。这个Scale因子的一般解释是:如果不除以$\sqrt{d}$,那么初始的Attention就会很接近one hot分布,这会造成梯度消失,导致模型训练不起来。然而,可以证明的是,当Scale等于0时同样也会有梯度消失问题,这也就是说Scale太大太小都不行。

那么多大的Scale才适合呢?$\frac{1}{\sqrt{d}}$是最佳的Scale了吗?本文试图从梯度角度来回答这个问题。

已有结果

《浅谈Transformer的初始化、参数化与标准化》中,我们已经推导过标准的Scale因子$\frac{1}{\sqrt{d}}$,推导的思路很简单,假设初始阶段$\boldsymbol{q},\boldsymbol{k}\in\mathbb{R}^d$都采样自“均值为0、方差为1”的分布,那么可以算得
\begin{equation}\mathbb{V}ar[\boldsymbol{q}\cdot\boldsymbol{k}] = d\end{equation}

点击阅读全文...

13 May

缓存与效果的极限拉扯:从MHA、MQA、GQA到MLA

前几天,幻方发布的DeepSeek-V2引起了大家的热烈讨论。首先,最让人哗然的是1块钱100万token的价格,普遍比现有的各种竞品API便宜了两个数量级,以至于有人调侃“这个价格哪怕它输出乱码,我也会认为这个乱码是一种艺术”;其次,从模型的技术报告看,如此便宜的价格背后的关键技术之一是它新提出的MLA(Multi-head Latent Attention),这是对GQA的改进,据说能比GQA更省更好,也引起了读者的广泛关注。

接下来,本文将跟大家一起梳理一下从MHA、MQA、GQA到MLA的演变历程,并着重介绍一下MLA的设计思路。

MHA

MHA(Multi-Head Attention),也就是多头注意力,是开山之作《Attention is all you need》所提出的一种Attention形式,可以说它是当前主流LLM的基础工作。在数学上,多头注意力MHA等价于多个独立的单头注意力的拼接,假设输入的(行)向量序列为$\boldsymbol{x}_1,\boldsymbol{x}_2,\cdots,\boldsymbol{x}_l$,其中$\boldsymbol{x}_i\in\mathbb{R}^d$,那么MHA可以形式地记为

点击阅读全文...

17 Apr

上一篇文章《生成扩散模型漫谈(二十二):信噪比与大图生成(上)》中,我们介绍了通过对齐低分辨率的信噪比来改进noise schedule,从而改善直接在像素空间训练的高分辨率图像生成(大图生成)的扩散模型效果。而这篇文章的主角同样是信噪比和大图生成,但做到了更加让人惊叹的事情——直接将训练好低分辨率图像的扩散模型用于高分辨率图像生成,不用额外的训练,并且效果和推理成本都媲美直接训练的大图模型!

这个工作出自最近的论文《Upsample Guidance: Scale Up Diffusion Models without Training》,它巧妙地将低分辨率模型上采样作为引导信号,并结合了CNN对纹理细节的平移不变性,成功实现了免训练高分辨率图像生成。

思想探讨

我们知道,扩散模型的训练目标是去噪(Denoise,也是DDPM的第一个D)。按我们的直觉,去噪这个任务应该是分辨率无关的,换句话说,理想情况下低分辨率图像训练的去噪模型应该也能用于高分辨率图像去噪,从而低分辨率的扩散模型应该也能直接用于高分辨率图像生成。

点击阅读全文...

8 Aug

生成扩散模型漫谈(六):一般框架之ODE篇

上一篇文章《生成扩散模型漫谈(五):一般框架之SDE篇》中,我们对宋飏博士的论文《Score-Based Generative Modeling through Stochastic Differential Equations》做了基本的介绍和推导。然而,顾名思义,上一篇文章主要涉及的是原论文中SDE相关的部分,而遗留了被称为“概率流ODE(Probability flow ODE)”的部分内容,所以本文对此做个补充分享。

事实上,遗留的这部分内容在原论文的正文中只占了一小节的篇幅,但我们需要新开一篇文章来介绍它,因为笔者想了很久后发现,该结果的推导还是没办法绕开Fokker-Planck方程,所以我们需要一定的篇幅来介绍Fokker-Planck方程,然后才能请主角ODE登场。

再次反思

我们来大致总结一下上一篇文章的内容:首先,我们通过SDE来定义了一个前向过程(“拆楼”):
\begin{equation}d\boldsymbol{x} = \boldsymbol{f}_t(\boldsymbol{x}) dt + g_t d\boldsymbol{w}\label{eq:sde-forward}\end{equation}

点击阅读全文...

1 Mar

科学空间|Scientific Spaces 介绍

中山大学基础数学研究生,本科为华南师范大学。93年从奥尔特星云移民地球,因忘记回家路线,遂仰望星空,希望找到时空之路。同时兼爱各种科学,热衷钻牛角尖,因此经常碰壁,但偶然把牛角钻穿,也乐在其中。偏爱物理、天文、计算机,喜欢思考,虽擅长理性分析,但也容易感情用事,崇拜Feynman。爱好阅读,没事偷懒玩玩象棋,闲时爱好进入厨房做几道小菜,偶尔也开开数据“挖掘机”。明明要学基础数学,偏偏不务正业,沉溺神经网络,妄想人工智能,曾未在ACL、AAAI、COLING等会议上发表一篇文章。近期还挣扎在NLP大坑,在科学空间(https://kexue.fm)期待大家的拯救。

历史内容

华南师范大学数学系学生。93年从奥尔特星云移民地球,因忘记回家路线,遂仰望星空,希望找到时空之路。同时兼爱各种科学,热衷钻牛角尖,因此经常碰壁,但偶然把牛角钻穿,也乐在其中。偏爱物理、天文,喜欢思考,虽擅长理性分析,但也容易感情用事,崇拜费曼。长期阅读《天文爱好者》和《环球科学》,没事偷懒玩玩象棋,闲时爱好进入厨房做几道小菜,偶尔也当当电工。近期主要学习理论物理,在科学空间期待大家的指教。

名称:科学空间|Scientific Spaces
网址:http://kexue.fm

站长:苏剑林
信念:探索我们的世界,聆听我们的自然

网站历史

2009.03.01 网站初步建立,刚开始的时候使用的是BoBlog以及宇宙驿站的空间,内容定位:科学转载。

2009.03.28 开始进行大规模推广,访问量开始提高

2009.03-05 期间进行过多次改变,特别是Blog程序的转换,内容上的改革等

点击阅读全文...