【中文分词系列】 6. 基于全卷积网络的中文分词
By 苏剑林 | 2017-01-13 | 60303位读者 | 引用之前已经写过用LSTM来做分词的方案了,今天再来一篇用CNN的,准确来说是FCN,全卷积网络。其实这个模型的主要目的并非研究中文分词,而是练习tensorflow。从两年前就开始用Keras了,可以说对它比较熟了,也渐渐发现了它的一些不足,比如处理变长输入时不方便、加入自定义的约束比较困难等,所以干脆试试原生的tensorflow了,试了之后发现其实也不复杂。嗯,都是python,能有多复杂。本文就是练习一下如何用tensorflow处理不定长输入任务,以中文分词为例,并在最后加入了硬解码,将深度学习与词典分词结合了起来。
CNN
另外,就是关于FCN的。放到语言任务中看,(一维)卷积其实就是ngram模型,从这个角度来看其实CNN远比RNN来得自然,RNN好像就是为序列任务精心设计的,而CNN则是传统ngram模型的一个延伸。另外不管CNN和RNN都有权值共享,看上去只是为了降低运算量的一个折中选择,但事实上里边大有道理。CNN中的权值共享是平移不变性的必然结果,而不是仅仅是降低运算量的一个选择,试想一下,将一幅图像平移一点点,或者在一个句子前插入一个无意义的空格(导致后面所有字都向后平移了一位),这样应该给出一个相似甚至相同的结果,而这要求卷积必然是权值共享的,即权值不能跟位置有关系。
【中文分词系列】 7. 深度学习分词?只需一个词典!
By 苏剑林 | 2017-03-06 | 117662位读者 | 引用这个系列慢慢写到第7篇,基本上也把分词的各种模型理清楚了,除了一些细微的调整(比如最后的分类器换成CRF)外,剩下的就看怎么玩了。基本上来说,要速度,就用基于词典的分词,要较好地解决组合歧义何和新词识别,则用复杂模型,比如之前介绍的LSTM、FCN都可以。但问题是,用深度学习训练分词器,需要标注语料,这费时费力,仅有的公开的几个标注语料,又不可能赶得上时效,比如,几乎没有哪几个公开的分词系统能够正确切分出“扫描二维码,关注微信号”来。
本文就是做了这样的一个实验,仅用一个词典,就完成了一个深度学习分词器的训练,居然效果还不错!这种方案可以称得上是半监督的,甚至是无监督的。
【中文分词系列】 8. 更好的新词发现算法
By 苏剑林 | 2017-03-11 | 231232位读者 | 引用如果依次阅读该系列文章的读者,就会发现这个系列共提供了两种从0到1的无监督分词方案,第一种就是《【中文分词系列】 2. 基于切分的新词发现》,利用相邻字凝固度(互信息)来做构建词库(有了词库,就可以用词典法分词);另外一种是《【中文分词系列】 5. 基于语言模型的无监督分词》,后者基本上可以说是提供了一种完整的独立于其它文献的无监督分词方法。
但总的来看,总感觉前面一种很快很爽,却又显得粗糙;后面一种很好很强大,却又显得太过复杂(viterbi是瓶颈之一)。有没有可能在两者之间折中一下?这就导致了本文的结果,达到了速度与效果的平衡。至于为什么说“更好”?因为笔者研究词库构建也有一段时间了,以往构建的词库总不能让人(让自己)满意,生成的词库一眼看上去,都能够扫到不少不合理的地方,真的要用得需要经过较多的人工筛选。而这一次,一次性生成的词库,一眼扫过去,不合理的地方少了很多,如果不细看,可能就发现不了了。
分词的目的
文本情感分类(四):更好的损失函数
By 苏剑林 | 2017-03-30 | 124121位读者 | 引用文本情感分类其实就是一个二分类问题,事实上,对于分类模型,都会存在这样一个毛病:优化目标跟考核指标不一致。通常来说,对于分类(包括多分类),我们都会采用交叉熵作为损失函数,它的来源就是最大似然估计(参考《梯度下降和EM算法:系出同源,一脉相承》)。但是,我们最后的评估目标,并非要看交叉熵有多小,而是看模型的准确率。一般来说,交叉熵很小,准确率也会很高,但这个关系并非必然的。
要平均,不一定要拔尖
一个更通俗的例子是:一个数学老师,在努力提高同学们的平均分,但期末考核的指标却是及格率(60分及格)。假如平均分是100分(也就意味着所有同学都考到了100分),那么自然及格率是100%,这是最理想的。但现实不一定这么美好,平均分越高,只要平均分还没有达到100,那么及格率却不一定越高,比如两个人分别考40和90,那么平均分就是65,及格率只有50%;如果两个人的成绩都是60,平均分就是60,及格率却有100%。这也就是说,平均分可以作为一个目标,但这个目标并不直接跟考核目标挂钩。
那么,为了提升最后的考核目标,这个老师应该怎么做呢?很显然,首先看看所有学生中,哪些同学已经及格了,及格的同学先不管他们,而针对不及格的同学进行补课加强,这样一来,原则上来说有很多不及格的同学都能考上60分了,也有可能一些本来及格的同学考不够60分了,但这个过程可以迭代,最终使得大家都在60分以上,当然,最终的平均分不一定很高,但没办法,谁叫考核目标是及格率呢?
记录一次半监督的情感分析
By 苏剑林 | 2017-05-04 | 52947位读者 | 引用本文是一次不怎么成功的半监督学习的尝试:在IMDB的数据集上,用随机抽取的1000个标注样本训练一个文本情感分类模型,并且在余下的49000个测试样本中,测试准确率为73.48%。
思路
本文的思路来源于OpenAI的这篇文章:
《OpenAI新研究发现无监督情感神经元:可直接调控生成文本的情感》
文章里边介绍了一种无监督(实际上是半监督)做情感分类的模型的方法,并且实验效果很好。然而文章里边的实验很庞大,对于个人来说几乎不可能重现(在4块Pascal GPU花了1个月时间训练)。不过,文章里边的思想是很简单的,根据里边的思想,我们可以做个“山寨版”的。思路如下:
我们一般用深度学习做情感分类,比较常规的思路就是Embedding层+LSTM层+Dense层(Sigmoid激活),我们常说的词向量,相当于预训练了Embedding层(这一层的参数量最大,最容易过拟合),而OpenAI的思想就是,为啥不连LSTM层一并预训练了呢?预训练的方法也是用语言模型来训练。当然,为了使得预训练的结果不至于丢失情感信息,LSTM的隐藏层节点要大一些。
如何“扒”站?手把手教你爬百度百科~
By 苏剑林 | 2017-05-17 | 33420位读者 | 引用开学啦!咱们来做完形填空~(讯飞杯)
By 苏剑林 | 2017-09-03 | 205426位读者 | 引用前言
从今年开始,CCL会议将计划同步举办评测活动。笔者这段时间在一创业公司实习,公司也报名参加这个评测,最后实现上就落在我这里,今年的评测任务是阅读理解,名曰《第一届“讯飞杯”中文机器阅读理解评测》。虽说是阅读理解,但事实上任务比较简单,是属于完形填空类型的,即一段材料中挖了一个空,从上下文中选一个词来填入这个空中。最后我们的模型是单系统排名第6,验证集准确率为73.55%,测试集准确率为75.77%,大家可以在这里观摩排行榜。(“广州火焰信息科技有限公司”就是文本的模型)
事实上,这个数据集和任务格式是哈工大去年提出的,所以这次的评测也是哈工大跟科大讯飞一起联合举办的。哈工大去年的论文《Consensus Attention-based Neural Networks for Chinese Reading Comprehension》就研究过另一个同样格式但不同内容的数据集,是用通用的阅读理解模型做的(通用的阅读理解是指给出材料和问题,从材料中找到问题的答案,完形填空可以认为是通用阅读理解的一个非常小的子集)。
虽然,在这次评测任务的介绍中,评测方总有意无意地引导我们将这个问题理解为阅读理解问题。但笔者觉得,阅读理解本身就难得多,这个就一完形填空,只要把它作为纯粹的完形填空题做就是了,所以本文仅仅是采用类似语言模型的做法来做。这种做法的好处是思路简明直观,计算量低(在笔者的GTX1060上可以跑到batch size为160),便于实验。
模型
回到模型上,我们的模型其实比较简单,完全紧扣了“从上下文中选一个词来填空”这一思想,示意图如下。
最近评论