文本情感分类(二):深度学习模型
By 苏剑林 | 2015-08-04 | 615694位读者 | 引用exp(1/2 t^2+xt)级数展开的图解技术
By 苏剑林 | 2015-08-13 | 31793位读者 | 引用本文要研究的是关于$t$的函数
$$\exp\left(\frac{1}{2}t^2+xt\right)$$
在$t=0$处的泰勒展开式。显然,它并不困难,手算或者软件都可以做出来,答案是:
$$1+x t+\frac{1}{2} \left(x^2+1\right) t^2+\frac{1}{6}\left(x^3+3 x\right) t^3 +\frac{1}{24} \left(x^4+6 x^2+3\right) t^4 + \dots$$
不过,本文将会给出笔者构造的该级数的一个图解方法。通过这个图解方法比较比较直观而方便地手算出展开式的前面一些项。后面我们再来谈谈这种图解技术的起源以及进一步的应用。
级数的图解方法:说明
首先,很明显要写出这个级数,关键是写出展开式的每一项,也就是要求出
$$f_k (x) = \left.\frac{d^k}{dt^k}\exp\left(\frac{1}{2}t^2+xt\right)\right|_{t=0}$$
$f_k (x)$是一个关于$x$的$k$次整系数多项式,$k$是展开式的阶,也是求导的阶数。
这里,我们用一个“点”表示一个$x$,用“两点之间的一条直线”表示“相乘”,那么,$x^2$就可以表示成
《量子力学与路径积分》习题解答V0.1
By 苏剑林 | 2015-09-14 | 38556位读者 | 引用2015诺贝尔医学奖:中国人在内
By 苏剑林 | 2015-10-05 | 24492位读者 | 引用把Python脚本放到手机上定时运行
By 苏剑林 | 2015-10-21 | 42851位读者 | 引用毫无疑问,数据是数据分析的基础,而对于我等平民来说,获取大量数据的方式自然是通过爬虫采集,而对于笔者来说,写爬虫最自然的方式就是用Python写了。短短几行代码,就可以完成一个实用的爬虫,多清爽。(请参考:《记录一次爬取淘宝/天猫评论数据的过程》)
爬虫要住在哪里?
接下来的一个问题是,这个爬虫放到哪里运行?为了爬取每天更新的数据,往往需要每天都要运行一次爬虫,特别地,是在某个点定时运行。这样的话,老挂在自己的电脑运行是不大现实,因为自己的电脑总有关机的时候。也许有读者会想到放在云服务器里边,这是个方法,但是需要额外的成本。受到小虾大神的启发,我开始想把它放到路由器里边运行,某些比较好的路由器是可以外接U盘,且可以刷open-wrt系统的(一个Linux内核的路由器系统,可以像普通Linux那样装Python)。这对我来说是一种很吸引人的做法,但是我对Linux环境下的编译并不熟悉,尤其是路由器环境下的操作;另外路由器配置很低,一般都只是16M闪存、64M内存,如果没有耐心,那么是很难受得了的。
一阶偏微分方程的特征线法
By 苏剑林 | 2017-12-07 | 83340位读者 | 引用本文以尽可能清晰、简明的方式来介绍了一阶偏微分方程的特征线法。个人认为这是偏微分方程理论中较为简单但事实上又容易让人含糊的一部分内容,因此尝试以自己的文字来做一番介绍。当然,更准确来说其实是笔者自己的备忘。
拟线性情形
一般步骤
考虑偏微分方程
$$\begin{equation}\boldsymbol{\alpha}(\boldsymbol{x},u) \cdot \frac{\partial}{\partial \boldsymbol{x}} u = \beta(\boldsymbol{x},u)\end{equation}$$
其中$\boldsymbol{\alpha}$是一个$n$维向量函数,$\beta$是一个标量函数,$\cdot$是向量的点积,$u\equiv u(\boldsymbol{x})$是$n$元函数,$\boldsymbol{x}$是它的自变量。
从loss的硬截断、软化到focal loss
By 苏剑林 | 2017-12-25 | 200446位读者 | 引用前言
今天在QQ群里的讨论中看到了focal loss,经搜索它是Kaiming大神团队在他们的论文《Focal Loss for Dense Object Detection》提出来的损失函数,利用它改善了图像物体检测的效果。不过我很少做图像任务,不怎么关心图像方面的应用。本质上讲,focal loss就是一个解决分类问题中类别不平衡、分类难度差异的一个loss,总之这个工作一片好评就是了。大家还可以看知乎的讨论:
《如何评价kaiming的Focal Loss for Dense Object Detection?》
看到这个loss,开始感觉很神奇,感觉大有用途。因为在NLP中,也存在大量的类别不平衡的任务。最经典的就是序列标注任务中类别是严重不平衡的,比如在命名实体识别中,显然一句话里边实体是比非实体要少得多,这就是一个类别严重不平衡的情况。我尝试把它用在我的基于序列标注的问答模型中,也有微小提升。嗯,这的确是一个好loss。
接着我再仔细对比了一下,我发现这个loss跟我昨晚构思的一个loss具有异曲同工之理!这就促使我写这篇博文了。我将从我自己的思考角度出发,来分析这个问题,最后得到focal loss,也给出我昨晚得到的类似的loss。
最近评论