《量子力学与路径积分》习题解答V0.5
By 苏剑林 | 2016-04-01 | 36335位读者 | 引用习题解答继续艰难推进中,目前是0.5版本,相比0.4版,跳过了8、9章,先做了第10、11章统计力学部分的习题。
第10章有10道习题,第11章其实没有习题。看上去很少,但其实每一道习题的难度都很大。这两章的主要内容都是在用路径积分方法算统计力学中的配分函数,这本来就是一个很艰辛的课题。加上费曼在书中那形象的描述,容易让读者能够认识到大概,但是却很难算下去。事实上,这一章的习题,我参考了相当多的资料,中文的、英文的都有,才勉强完成了。
虽说是完成,但10道题目中,我只完成了9道,其中问题10-3是有困惑的,我感觉的结果跟费曼给出的不一样,因此就算不下去了。在这里提出来,希望了解的读者赐教。
路径积分系列:2.随机游走模型
By 苏剑林 | 2016-05-30 | 56057位读者 | 引用随机游走模型形式简单,但通过它可以导出丰富的结果,它是物理中各种扩散模型的基础之一,它也等价于随机过程中的布朗运动.
笔者所阅的文献表明,数学家已经对对称随机游走问题作了充分研究[2],也探讨了随机游走问题与偏微分方程的关系[3],并且还研究过不对称随机游走问题[4]. 然而,已有结果的不足之处有:1、在推导随机游走问题的概率分布或者偏微分方程之时,所用的方法不够简洁明了;2、没有研究更一般的不对称随机游走问题.
本章弥补了这一不足,首先通过母函数和傅里叶变换的方法,推导出了不对称随机游走问题所满足的偏微分方程,并且提出,由于随机游走容易通过计算机模拟,因此通过随机游走来模拟偏微分方程的解是一种有效的数值途径.
模型简介
本节通过一个本质上属于二项分布的走格子问题来引入随机游走.
考虑实数轴上的一个粒子,在$t=0$时刻它位于原点,每秒钟它以相等的概率向前或向后移动一格($+1$或$-1$),问$n$秒后它所处位置的概率分布.
进驻中山大学南校区,折腾校园网
By 苏剑林 | 2016-09-05 | 80540位读者 | 引用开始研究僧之旅,希望有一天能企及扫地僧的境界。
进入中山大学后,各种郁闷的事情就来了。首先最郁闷的就是开学时间特早,8月26日开学,感觉至少比一般学校早了一星期,开学这么早有意思么~~接着就是感觉中大的管理制度各种混乱,比我本科的华师差多了。好吧,这些琐事先不吐槽,接下来弄校园网,这是作死的开始。
我们是在南校区的,校园网是通过锐捷客户端来认证的,而我是用macbook的,不过中大这边还很人性化地提供了Mac版的锐捷,体积就1M左右,挺好的。但众所周知,macbook并没有有线网卡,每次我上网都得插着个USB网卡然后连着网线,这该有多郁闷。于是想办法通过路由器拨号。我也不算没经验的了,对openwrt这个系统有过一定研究,以前在本科的时候也是锐捷,可以用mentohust替代拨号,很简单。于是我在这里重复这样的过程,发现一直认证失败,按照网上提示的各种方法,都无法解决。
经过研究,我发现在Windows下,这里就只能用官方提供了锐捷4.90版本,从其他地方下载的更高级或者更低级的锐捷,都无法通过验证。估计就是因为这个机制,导致了mentohust难以通过验证。而且网上流行的mentohust都是基于V2协议的,但4.90是基于V4的。后来我又去下载了V4版本的进行交叉编译,测试发现还不成功。几近绝望的时候,我发现了mentohust-proxy,一个mentohust的改进版,让我找到了希望。(怎么找到它?我是直接到github搜索了,因为实在没辙了~~)
原理很简单,如果直接通过mentohust无法完成认证,那么就通过代理模式,由电脑来完成认证,而mentohust只需要负责发送心跳包维持联网就行。这是个很折中的方案,但应该说是一个很通用的方案,因为它的成功与否,基本就取决于自己电脑的锐捷客户端而已。看到这个方案,我就知道有戏了,于是赶紧补习了一下交叉编译的知识,最后成功编译好了,并且在路由上成功地完成了认证。
【理解黎曼几何】3. 测地线
By 苏剑林 | 2016-10-15 | 56755位读者 | 引用测地线
黎曼度量应该是不难理解的,在微分几何的教材中,我们就已经学习过曲面的“第一基本形式”了,事实上两者是同样的东西,只不过看待问题的角度不同,微分几何是把曲面看成是三维空间中的二维子集,而黎曼几何则是从二维曲面本身内蕴地研究几何问题。
几何关心什么问题呢?事实上,几何关心的是与变换无关的“客观实体”(或者说是在变换之下不变的东西),这也是几何的定义。根据Klein提出的《埃尔朗根纲领》,几何就是研究在某种变换(群)下的不变性质的学科。如果把变换局限为刚性变换(平移、旋转、反射),那么就是欧式几何;如果变换为一般的线性变换,那就是仿射几何。而黎曼几何关心的是与一切坐标都无关的客观实体。比如说,我有一个向量,方向和大小都确定了,在直角坐标系是$(1, 1)$,在极坐标系是$(\sqrt{2}, \pi/4)$,虽然两个坐标系下的分量不同,但它们都是指代同一个向量。也就是说向量本身是客观存在的实体,跟所使用的坐标无关。从代数层面看,就是只要能够通过某种坐标变换相互得到的,我们就认为它们是同一个东西。
因此,在学习黎曼几何时,往“客观实体”方向思考,总是有益的。
有了度规,可以很自然地引入“测地线”这一实体。狭义来看,它就是两点间的最短线——是平直空间的直线段概念的推广(实际的测地线不一定是最短的,但我们先不纠结细节,而且这不妨碍我们理解它,因为测地线至少是局部最短的)。不难想到,只要两点确定了,那么不管使用什么坐标,两点间的最短线就已经确定了,因此这显然是一个客观实体。有一个简单的类比,就是不管怎么坐标变换,一个函数$f(x)$的图像极值点总是确定的——不管你变还是不变,它就在那儿,不偏不倚。
狄拉克函数:级数逼近
By 苏剑林 | 2017-01-11 | 46291位读者 | 引用魏尔斯特拉斯定理
将狄拉克函数理解为函数的极限,可以衍生出很丰富的内容,而且这些内容离严格的证明并不遥远。比如,定义
$$\delta_n(x)=\left\{\begin{aligned}&\frac{(1-x^2)^n}{I_n},x\in[-1,1]\\
&0,\text{其它情形}\end{aligned}\right.$$
其中$I_n = \int_{-1}^1 (1-x^2)^n dx$,于是不难证明
$$\delta(x)=\lim_{n\to\infty}\delta_n(x)$$
这样,对于$[a,b]$上的连续函数$f(x)$,我们就得到
$$f(x)=\int_{-1}^1 f(y)\delta(x-y)dy = \lim_{n\to\infty}\int_{-1}^1 f(y)\delta_n(x-y) dy$$
这里$-1 < a < b < 1$,并且我们已经“不严谨”地交换了积分号和极限号,但这不是特别重要。重要的是它的结果:可以看到
$$P_n(x)=\int_{-1}^1 f(y)\delta_n(x-y) dy$$
是$x$的一个$2n$次多项式,因此上式表明$f(x)$是一个$2n$次的多项式的极限!这就引出了著名的“魏尔斯特拉斯定理”:
闭区间上的连续函数都可以用多项式一致地逼近。
SVD分解(三):连Word2Vec都只不过是个SVD?
By 苏剑林 | 2017-02-23 | 96820位读者 | 引用这篇文章要带来一个“重磅”消息,如标题所示,居然连大名鼎鼎的深度学习词向量工具Word2Vec都只不过是个SVD!
当然,Word2Vec的超级忠实粉丝们,你们也不用太激动,这里只是说模型结构上是等价的,并非完全等价,Word2Vec还是有它的独特之处。只不过,经过我这样解释之后,估计很多问题就可以类似想通了。
词向量=one hot
让我们先来回顾一下去年的一篇文章《词向量与Embedding究竟是怎么回事?》,这篇文章主要说的是:所谓Embedding层,就是一个one hot的全连接层罢了(再次强调,这里说的完全等价,而不是“相当于”),而词向量,就是这个全连接层的参数;至于Word2Vec,就通过大大简化的语言模型来训练Embedding层,从而得到词向量(它的优化技巧有很多,但模型结构就只是这么简单);词向量能够减少过拟合风险,是因为用Word2Vec之类的工具、通过大规模语料来无监督地预训练了这个Embedding层,而跟one hot还是Embedding还是词向量本身没啥关系。
有了这个观点后,马上可以解释我们以前的一个做法为什么可行了。在做情感分类问题时,如果有了词向量,想要得到句向量,最简单的一个方案就是直接对句子中的词语的词向量求和或者求平均,这约能达到85%的准确率。事实上这也是facebook出品的文本分类工具FastText的做法了(FastText还多引入了ngram特征,来缓解词序问题,但总的来说,依旧是把特征向量求平均来得到句向量)。为什么这么一个看上去毫不直观的、简单粗暴的方案也能达到这么不错的准确率?
梯度下降和EM算法:系出同源,一脉相承
By 苏剑林 | 2017-03-23 | 213296位读者 | 引用PS:本文就是梳理了梯度下降与EM算法的关系,通过同一种思路,推导了普通的梯度下降法、pLSA中的EM算法、K-Means中的EM算法,以此表明它们基本都是同一个东西的不同方面,所谓“横看成岭侧成峰,远近高低各不同”罢了。
在机器学习中,通常都会将我们所要求解的问题表示为一个带有未知参数的损失函数(Loss),如平均平方误差(MSE),然后想办法求解这个函数的最小值,来得到最佳的参数值,从而完成建模。因将函数乘以-1后,最大值也就变成了最小值,因此一律归为最小值来说。如何求函数的最小值,在机器学习领域里,一般会流传两个大的方向:1、梯度下降;2、EM算法,也就是最大期望算法,一般用于复杂的最大似然问题的求解。
在通常的教程中,会将这两个方法描述得迥然不同,就像两大体系在分庭抗礼那样,而EM算法更是被描述得玄乎其玄的感觉。但事实上,这两个方法,都是同一个思路的不同例子而已,所谓“本是同根生”,它们就是一脉相承的东西。
让我们,先从远古的牛顿法谈起。
牛顿迭代法
给定一个复杂的非线性函数$f(x)$,希望求它的最小值,我们一般可以这样做,假定它足够光滑,那么它的最小值也就是它的极小值点,满足$f'(x_0)=0$,然后可以转化为求方程$f'(x)=0$的根了。非线性方程的根我们有个牛顿法,所以
\begin{equation}x_{n+1} = x_{n} - \frac{f'(x_n)}{f''(x_n)}\end{equation}
科学空间添加新域名kexue.fm
By 苏剑林 | 2017-04-23 | 32750位读者 | 引用在上个月,偶然间发现kexue.fm这个域名还没被注册,感觉挺不错的,所以赶紧把它注册了。
事实上,笔者一直以来都挺喜欢fm这个后缀的域名,因为FM也是电台的简写,fm域名的网站,从域名上就给人一种听电台般的惬意。刚好,顺手注册了kexue.fm这个域名,感觉很配本博客“科学空间”这个名字,也很符合本博客创办之初的理念——让科学流行起来——这也意味着科学会像听电台般舒服。当然,另一方面,它也更加好记。域名在大概一个月前就注册好了,但域名的备案,前前后后花了差不多一个月的时间,所以到现在才加上到科学空间中。如今科学空间的服务器也已经迁移到了阿里云。
原来的域名spaces.ac.cn也会一直保留着,双域名皆可访问。此外,申请了@spaces.ac.cn后缀邮箱的读者也不用担心,这个邮箱也会一直保留着。
欢迎大家多用新域名访问^_^
最近评论