线性微分方程组:已知特解求通解
By 苏剑林 | 2014-06-18 | 37977位读者 | 引用含有$n$个一阶常微分方程的一阶常微分方程组
$$\dot{\boldsymbol{x}}=\boldsymbol{A}\boldsymbol{x}$$
其中$\boldsymbol{x}=(x_1(t),\dots,x_n(t))^{T}$为待求函数,而$\boldsymbol{A}=(a_{ij}(t))_{n\times n}$为已知的函数矩阵。现在已知该方程组的$n-1$个线性无关的特解$\boldsymbol{x}_1,\boldsymbol{x}_2,\dots,\boldsymbol{x}_{n-1}$(解的列向量),求方程的通解。
这是我的一位同学在6月5号问我的一道题目,我当时看了一下,感觉可以通过李对称的方法很容易把解构造出来,当晚就简单分析了一下,发现根据李对称的思想,由上面已知的信息确实足以把通解构造出来。但是我尝试了好几天,尝试了几何、代数等思想,都没有很好地构造出相应的正则变量出来,从而也没有写出它的显式解,于是就搁置下来了。今天再分析这道题目时,竟在无意之间构造出了让我比较满意的解来~
翻到新的维度,把积分解决!
By 苏剑林 | 2014-02-25 | 38330位读者 | 引用一般来说,如果原函数容易找到的话,牛顿-莱布尼兹公式是定积分的通用方法。但是牛顿-莱布尼兹公式只适合连续函数的积分,如果积分区间含有奇点,那就不成立了。比如,我们考虑积分
$$\int_{-1}^1 \frac{1}{x^2}dx$$
当然,从严格的数学上来说,这种写法是不成立的,因为被积函数在原点没有意义。当然,从物理的角度来考虑,由于对称性,我们确信
$$\int_{-1}^1 \frac{1}{x^2}dx=2\int_{0}^1 \frac{1}{x^2}dx=\lim_{\varepsilon\to 0}2\int_{\varepsilon}^1 \frac{1}{x^2}dx$$
从而得出积分发散的结论。这种处理某种程度上是可以接受的,但是却不是让人满意的,因为它导致了分段。有什么办法可以直接处理这种情况呢?确实有的,同样引入参数,并且最终让参数为0,考虑带参数的积分
$$\int_{-1}^1 \frac{1}{x^2+\varepsilon^2}dx$$
只要参数为正,这个被积函数就在$\mathbb{R}$上处处连续了,也就是奇点消失了,这样子就可以用牛顿-莱布尼兹公式了
$$\int_{-1}^1 \frac{1}{x^2+\varepsilon^2}dx=\left.\frac{1}{\varepsilon}\arctan\left(\frac{x}{\varepsilon}\right)\right|_{-1}^{1}$$
考虑$\varepsilon\to 0$的情况,就自动得到了积分发散的结论。
Mathieu方程
在文章《有质动力:倒立单摆的稳定性》中,我们分析了通过高频低幅振荡来使得倒立单摆稳定的可能性,并且得出了运动方程
$$l\ddot{\theta}+[h_0 \omega^2 \cos(\omega t)-g]\sin\theta=0$$
由此对单摆频率的下限提出了要求$\omega \gg \sqrt{\frac{g}{h_0}}$。然而,那个下限只不过是必要的,却不是充分的。如果要完整地分析该单摆的运动方程,最理想的方法当然是写出上述常微分方程的解析解。不过很遗憾,我们并没有办法做到这一点。我们只能够采取各种近似方法来求解。近似方法一般指数值计算方法,然后笔者偏爱的是解析方法,也就是说,即使是近似解,也希望能够求出近似的解析解。
当概率遇上复变:解析概率
By 苏剑林 | 2014-04-25 | 28579位读者 | 引用每当看到数学的两个看似毫不相关的分支巧妙地联系了起来时,我总会为数学的神奇美丽惊叹不已。在很久以前,当我看到通过生成函数法把数论问题与复变函数方法结合起来,衍生出一门奇妙的“解析数论”时,我就惊叹过生成函数法的漂亮!可惜,一直都没有好好写整理这些内容。今天,当我在看李政道先生的《物理学中的数学方法》时,看到他把复变函数跟随机游动如鬼斧神工般了起来,再次让我拍案叫绝。最后实在压抑不住心中的激动,在此写写概率论和生成函数的事情。
数论与复变函数结合,就生成了一门“解析数论”,按照这个说法,概率与复变函数结合,应该就会有一门“解析概率”,但是我在网上搜索的时候,并没有发现这个名词的存在。经过如此,本文还是试用了这个名词。虽然这个名词没有流行,但事实上,解析概率的方法并不算新,它可以追溯到伟大的数学家拉普拉斯以及他的著作《分析概率论》中。尽管如此,这种巧妙漂亮的方法似乎没有得到大家应该有的充分的认识。
我觉得,即使作为一个简洁的计算工具,生成函数法这个美丽的技巧,也应该尽可能为科学爱好者所知,更不用说数学专业的朋友了。
当概率遇上复变:随机游走基本公式
By 苏剑林 | 2014-04-30 | 60851位读者 | 引用从费马大定理谈起(九):n=3
By 苏剑林 | 2014-09-01 | 29230位读者 | 引用现在可以开始$n=3$的证明了。在实整数范围内n=3的证明看起来相当复杂,而且跟n=4的证明似乎没有相通之处。然而,如果我们在$\mathbb{Z}[\omega]$中考虑$x^3+y^3+z^3=0$无解的证明,就会跟n=4时有很多类似的地方,而且事实上证明比n=4时简单(要注意在实整数范围内的证明,n=4比n=3简单。费马完成了n=4的证明,但是没完成n=3的证明。)。我想,正是这样的类似之处,才让当初还没有完成证明的数学家拉梅就自信他从这条路可以完成费马大定理的证明。(不过,这自信却是失败的案例:拉梅的路不能完全走通,而沿着这条路走得更远的当属库默,但即便这样,库默也没有证明费马大定理。)
证明跟$n=4$的第二个证明是类似的。我们先往方程中添加一个单位数,然后证明无论单位数是什么,方程在$\mathbb{Z}[\omega]$中都无解。这是一个很妙的技巧,让我们证明了更多的方程无解,但是却用到了更少的步骤。事实上,存在着只证明$x^3+y^3+z^3=0$无解的证明,但需要非常仔细地分析里边的单位数情况,这是相当麻烦的。本证明是我参考了Fermats last theorem blogspot上的证明,然后结合本系列n=4的第二个证明,简化而来,主要是减少了对单位数的仔细分析。
从费马大定理谈起(六):n=4(2)
By 苏剑林 | 2014-08-19 | 26866位读者 | 引用在上一篇文章中,笔者提到似乎证明n=4时必须要证明$x^4+y^4=z^2$无解而不能只证明$x^4+y^4=z^4$无解。不过,在今天中午研究的时候,笔者发现了另外一个n=4的证明,它同样是在$\mathbb{Z}[i]$中,但是,证明的则是指数全是4的形式,但是,又不单单是$x^4+y^4=z^4$的形式,而是$\varepsilon x^4+y^4=z^4$,$\varepsilon$是单位数。这个证明过程,我觉得应该更接近n等于其他奇素数时的证明,遂补充了这篇文章,供大家参考。读者可以对比着上一篇文章进行比较阅读。
引理
用$\varepsilon_1,\varepsilon_2,\varepsilon_3,\varepsilon$表示$\mathbb{Z}[i]$中的单位数,下面先证明
如果方程$\varepsilon_1 x'^4 +\varepsilon_2 y'^4+\varepsilon_3 z'^4=0$在$\mathbb{Z}[i]$中有全不为0的解,那么在经过适当的化简和整理之后,方程必有形式$\varepsilon x^4+y^4=z^4$,其中$(x,y,z)$是$(x',y',z')$的某个置换,$\xi^2|x$。
从费马大定理谈起(七):费马平方和定理
By 苏剑林 | 2014-08-23 | 30301位读者 | 引用本想着开始准备n=3的证明,但这需要引入Eisenstein整数的概念,而我们已经引入了高斯整数,高斯整数的美妙还没有很好地展示给读者。从n=4的两个证明可以知道,引入高斯整数的作用,是把诸如$z^n-y^n$的式子进行完全分解。然而,这一点并没有给我们展示多少高斯整数的神奇。读者或许已经知道,复分析中很多简单的结果,如果单纯用实数描述出来,便会给人巧夺天工的感觉,在涉及到高斯整数的数论中也是一样。本文就让我们来思考费马平方和定理,以此再领会在高斯整数中处理某些数论问题时的便捷。——我们从费马大定理谈起,但又并不仅仅只谈费马大定理。
费马平方和定理:奇素数$p$可以表示为两个整数的平方和,当且仅当该素数具有$4k+1$的形式,而且不考虑相加顺序的情况下,表示法是唯一的。
最近评论