词向量与Embedding究竟是怎么回事?
By 苏剑林 | 2016-12-03 | 273130位读者 | 引用词向量,英文名叫Word Embedding,按照字面意思,应该是词嵌入。说到词向量,不少读者应该会立马想到Google出品的Word2Vec,大牌效应就是不一样。另外,用Keras之类的框架还有一个Embedding层,也说是将词ID映射为向量。由于先入为主的意识,大家可能就会将词向量跟Word2Vec等同起来,而反过来问“Embedding是哪种词向量?”这类问题,尤其是对于初学者来说,应该是很混淆的。事实上,哪怕对于老手,也不一定能够很好地说清楚。
这一切,还得从one hot说起...
五十步笑百步
one hot,中文可以翻译为“独热”,是最原始的用来表示字、词的方式。为了简单,本文以字为例,词也是类似的。假如词表中有“科、学、空、间、不、错”六个字,one hot就是给这六个字分别用一个0-1编码:
$$\begin{array}{c|c}\hline\text{科} & [1, 0, 0, 0, 0, 0]\\
\text{学} & [0, 1, 0, 0, 0, 0]\\
\text{空} & [0, 0, 1, 0, 0, 0]\\
\text{间} & [0, 0, 0, 1, 0, 0]\\
\text{不} & [0, 0, 0, 0, 1, 0]\\
\text{错} & [0, 0, 0, 0, 0, 1]\\
\hline
\end{array}$$
端到端的腾讯验证码识别(46%正确率)
By 苏剑林 | 2016-12-14 | 74519位读者 | 引用最新结果请参考:http://kexue.fm/archives/4503/
前段时间有幸得到了一个网友提供的一批带标签的腾讯验证码样本(验证码样板:http://captcha.qq.com/getimage),于是抽了点时间,测试了一下验证码识别的模型。
样本
这批验证码比较简单,4位的英文字母,有大小写,但输入的时候不区分大小写,图案有一定的混淆,传统的基于分割的方案估计比较难办。端到端的方案是,直接将验证码输入,做几个卷积层,然后连接几个分类器(26分类),然后就直接输出四个字母标签了。其实还真没有什么好说的,有样本就能做了,而且这个框架是通用的,可以用到区分大小写的情形(52分类),也可以用到英文数字混合的情形(再加10个类别而已)。
2017年快乐!Responsive Geekg for Typecho
By 苏剑林 | 2016-12-31 | 33809位读者 | 引用获取并处理中文维基百科语料
By 苏剑林 | 2017-01-06 | 106862位读者 | 引用中文语料库中,质量高而又容易获取的语料库,应该就是维基百科的中文语料了,而且维基百科相当厚道,每个月都把所有条目都打包一次(下载地址在这里:https://dumps.wikimedia.org/zhwiki/),供全世界使用,这才是真正的“取之于民,回馈于民”呀。遗憾的是,由于天朝的无理封锁,中文维基百科的条目到目前只有91万多条,而百度百科、互动百科都有千万条了(英文维基百科也有上千万了)。尽管如此,这并没有阻挡中文维基百科成为几乎是最高质量的中文语料库。(百度百科、互动百科它们只能自己用爬虫爬取,而且不少记录质量相当差,几乎都是互相复制甚至抄袭。)
门槛
尽量下载很容易,但是使用维基百科语料还是有一定门槛的。直接下载下来的维基百科语料是一个带有诸多html和markdown标记的文本压缩包,基本不能直接使用。幸好,已经有热心的高手为我们写好了处理工具,主要有两个:1、Wikipedia Extractor;2、gensim的wikicorpus库。它们都是基于python的。
然而,这两个主流的处理方法都不能让我满意。首先,Wikipedia Extractor提取出来的结果,会去掉{{}}标记的内容,这样会导致下面的情形
西方语言中“数学”(;)一词源自于古希腊语的()
基于遗忘假设的平滑公式
By 苏剑林 | 2017-01-07 | 21216位读者 | 引用统计是通过大量样本来估计真实分布的过程,通常与统计相伴出现的一个词是“平滑”,即对统计结果打折扣的处理过程。平滑的思想来源于:如果样本空间非常大,那么统计的结果是稀疏的,这样由于各种偶然因素的存在,导致了小的统计结果不可靠,如频数为1的结果可能只是偶然的结果,其频率并不一定近似于$1/N$,频数为0的不一定就不会出现。这样我们就需要对统计结果进行平滑,使得结论更为可靠。
平滑的方法有很多,这里介绍一种基于遗忘假设的平滑公式。假设的任务为:我们要从一批语料中,统计每个字的字频。我们模仿人脑遗忘的过程,假设这个字出现一次,我们脑里的记忆量就增加1,但是如果一个周期内(先不管这个周期多大),这个字都没有出现,那么脑里的记忆量就变为原来的$\beta$比例。假设字是周期性出现的,那么记忆量$A_n$就满足如下递推公式
$$A_{n+1} = \beta A_n + 1$$
最近评论