《自然极值》系列——1.前言
By 苏剑林 | 2010-11-27 | 51678位读者 | 引用附:期中考过后,课程紧了,自由时间少了,因此科学空间的更新也放缓了。不过BoJone也会尽量地更新一些内容,和大家一同分享学习的乐趣。
上一周和这一周的时间里,BoJone将自己学习物理和极值的一些内容进行了总结和整合,写成了《自然极值》一文。因此从今天起,到十二月的大多数时间里,科学空间将和大家讲述并讨论关于“极值”的问题,希望读者会喜欢这部分内容。当然,我不是专业的研究人员,更不是经验丰富的物理和数学教师,甚至可以说是一个“乳臭未干的小子”,因此,错误在所难免,只希望同好不吝指出,更希冀能够起到我抛出的这一块“砖”能够引出美妙的“玉”。
P-tuning:自动构建模版,释放语言模型潜能
By 苏剑林 | 2021-04-03 | 142551位读者 | 引用在之前的文章《必须要GPT3吗?不,BERT的MLM模型也能小样本学习》中,我们介绍了一种名为Pattern-Exploiting Training(PET)的方法,它通过人工构建的模版与BERT的MLM模型结合,能够起到非常好的零样本、小样本乃至半监督学习效果,而且该思路比较优雅漂亮,因为它将预训练任务和下游任务统一起来了。然而,人工构建这样的模版有时候也是比较困难的,而且不同的模版效果差别也很大,如果能够通过少量样本来自动构建模版,也是非常有价值的。
最近Arxiv上的论文《GPT Understands, Too》提出了名为P-tuning的方法,成功地实现了模版的自动构建。不仅如此,借助P-tuning,GPT在SuperGLUE上的成绩首次超过了同等级别的BERT模型,这颠覆了一直以来“GPT不擅长NLU”的结论,也是该论文命名的缘由。
精确自由落体运动定律的讨论(二)
By 苏剑林 | 2010-01-09 | 54307位读者 | 引用之前在这篇文章中,我们使用过一个牛顿引力场中的自由落体公式:
$t=\sqrt{\frac{r_0}{2GM}}{r_0 \cdot arctg \sqrt{\frac{r_0 -r}{r}}+\sqrt{r(r_0 -r)}}$——(1)
我们来尝试一下推导出这个公式来。同时,站长在逐渐深入研究的过程中,发现微分方程极其重要。以前一些我认为不可能解决的问题,都用微分方程逐渐解决了。在以后的文章里,我们将会继续体验到微分方程的伟大魔力!因此,建议各位有志研究物理学的朋友,一定要掌握微分方程,更加深入的,需要用到偏微分方程!
首先,质量为m的物理在距离地心r处的引力为$\frac{GMm}{r^2}$,根据牛顿第二定律F=ma,自然下落的物体所获得的加速度为$\frac{GM}{r^2}$。假设物体从距离地心r开始向地心自由下落,求位移s关于t的函数s=s(t).
精确自由落体运动定律的讨论
By 苏剑林 | 2009-12-26 | 38068位读者 | 引用关于自由落体公式的简单修正
By 苏剑林 | 2010-04-04 | 66654位读者 | 引用自由落体的一般定义是:只考虑吸引天体和被吸引天体的引力因素,忽略其他的运动和大气摩擦等因素,物体从静止(相对于吸引天体)开始接近吸引天体的运动。根据这个定义,假设地球为一个均匀球体,半径为r,质量为M,物体从距离地表h高度处自由落下。求落到地面的时间t,或者根据时间t求h。
令s为t时刻物体左右下落的物体与地表的距离,忽略物体的小质量,那么可以列出微分方程:
$$\frac{d^2 s}{dt^2}=-\frac{GM}{(r+s)^2}\tag{1}$$并且初始条件是$t=0,s=h,\dot{s}=v=0$
在实际应用中,我们不必求出这道微分方程的精确解,因为这个解极其麻烦,在之前曾经讨论过。我们只需要求出一个有足够精确度的近似解就行。
大自然的隐身术——保护色
By 苏剑林 | 2010-02-21 | 35468位读者 | 引用《自然极值》系列——2.费马原理
By 苏剑林 | 2010-11-27 | 42306位读者 | 引用物理学的美不仅仅表现在简洁的公式上。我们还惊奇地发现,很多物理现象都是按照使某个变量达到极值的方式发生。一个典型的例子就是费马原理,它指出了光的传播路径的一个重要规律:光总是沿着所花时间最短的路径传播。这里我们将简单介绍一下费马原理。
费马原理俗称“最快到达原理”、“最小时间原理”。1657年,费马提出:
从P点到达Q点,在所有可行的路径中,光选择了所需时间最短的一条。
从P点到达Q点,在所有可行的路径中,光选择了所需时间为极值的一条。
这是一个极其奇妙的原理,也是自然界中最神奇的极值之一。作为非生物的光,居然自主地选择了最优路径,成为世界上“效率最高”的东西,这让人不得不佩服宇宙的伟大。这究竟是造物者的精心设计,还是无心之作?
最近评论