22 Apr

GAU-α:尝鲜体验快好省的下一代Attention

《FLASH:可能是近来最有意思的高效Transformer设计》中,我们介绍了GAU(Gated Attention Unit,门控线性单元),在这里笔者愿意称之为“目前最有潜力的下一代Attention设计”,因为它真正达到了“更快(速度)、更好(效果)、更省(显存)”的特点。

然而,有些读者在自己的测试中得到了相反的结果,比如收敛更慢、效果更差等,这与笔者的测试结果大相径庭。本文就来分享一下笔者自己的训练经验,并且放出一个尝鲜版“GAU-α”供大家测试。

GAU-α

首先介绍一下开源出来的“GAU-α”在CLUE任务上的成绩单:
$$\small{\begin{array}{c|ccccccccccc}
\hline
& \text{iflytek} & \text{tnews} & \text{afqmc} & \text{cmnli} & \text{ocnli} & \text{wsc} & \text{csl} & \text{cmrc2018} & \text{c3} & \text{chid} & \text{cluener}\\
\hline
\text{BERT} & 60.06 & 56.80 & 72.41 & 79.56 & 73.93 & 78.62 & 83.93 & 56.17 & 60.54 & 85.69 & 79.45 \\
\text{RoBERTa} & 60.64 & \textbf{58.06} & 74.05 & 81.24 & 76.00 & \textbf{87.50} & 84.50 & 56.54 & 67.66 & 86.71 & 79.47\\
\text{RoFormer} & 60.91 & 57.54 & 73.52 & 80.92 & \textbf{76.07} & 86.84 & 84.63 & 56.26 & 67.24 & 86.57 & 79.72\\
\text{RoFormerV2}^* & 60.87 & 56.54 & 72.75 & 80.34 & 75.36 & 80.92 & 84.67 & 57.91 & 64.62 & 85.09 & \textbf{81.08}\\
\hline
\text{GAU-}\alpha & \textbf{61.41} & 57.76 & \textbf{74.17} & \textbf{81.82} & 75.86 & 79.93 & \textbf{85.67} & \textbf{58.09} & \textbf{68.24} & \textbf{87.91} & 80.01\\
\hline
\end{array}}$$

点击阅读全文...

7 Apr

听说Attention与Softmax更配哦~

不知道大家留意到一个细节没有,就是当前NLP主流的预训练模式都是在一个固定长度(比如512)上进行,然后直接将预训练好的模型用于不同长度的任务中。大家似乎也没有对这种模式有过怀疑,仿佛模型可以自动泛化到不同长度是一个“理所应当”的能力。

当然,笔者此前同样也没有过类似的质疑,直到前几天笔者做了Base版的GAU实验后才发现GAU的长度泛化能力并不如想象中好。经过进一步分析后,笔者才明白原来这种长度泛化的能力并不是“理所当然”的......

模型回顾

《FLASH:可能是近来最有意思的高效Transformer设计》中,我们介绍了“门控注意力单元GAU”,它是一种融合了GLU和Attention的新设计。

除了效果,GAU在设计上给我们带来的冲击主要有两点:一是它显示了单头注意力未必就逊色于多头注意力,这奠定了它“快”、“省”的地位;二是它是显示了注意力未必需要Softmax归一化,可以换成简单的$\text{relu}^2$除以序列长度:
\begin{equation}\boldsymbol{A}=\frac{1}{n}\text{relu}^2\left(\frac{\mathcal{Q}(\boldsymbol{Z})\mathcal{K}(\boldsymbol{Z})^{\top}}{\sqrt{s}}\right)=\frac{1}{ns}\text{relu}^2\left(\mathcal{Q}(\boldsymbol{Z})\mathcal{K}(\boldsymbol{Z})^{\top}\right)\end{equation}

点击阅读全文...

11 Apr

熵不变性Softmax的一个快速推导

在文章《从熵不变性看Attention的Scale操作》中,我们推导了一版具有熵不变性质的注意力机制:
\begin{equation}Attention(Q,K,V) = softmax\left(\frac{\kappa \log n}{d}QK^{\top}\right)V\label{eq:a}\end{equation}
可以观察到,它主要是往Softmax里边引入了长度相关的缩放因子$\log n$来实现的。原来的推导比较繁琐,并且做了较多的假设,不利于直观理解,本文为其补充一个相对简明快速的推导。

推导过程

我们可以抛开注意力机制的背景,直接设有$s_1,s_2,\cdots,s_n\in\mathbb{R}$,定义
$$p_i = \frac{e^{\lambda s_i}}{\sum\limits_{i=1}^n e^{\lambda s_i}}$$

点击阅读全文...

20 Apr

你的语言模型有没有“无法预测的词”?

众所周知,分类模型通常都是先得到编码向量,然后接一个Dense层预测每个类别的概率,而预测时则是输出概率最大的类别。但大家是否想过这样一种可能:训练好的分类模型可能存在“无法预测的类别”,即不管输入是什么,都不可能预测出某个类别$k$,类别$k$永远不可能成为概率最大的那个。

当然,这种情况一般只出现在类别数远远超过编码向量维度的场景,常规的分类问题很少这么极端的。然而,我们知道语言模型本质上也是一个分类模型,它的类别数也就是词表的总大小,往往是远超过向量维度的,那么我们的语言模型是否有“无法预测的词”?(只考虑Greedy解码)

是否存在

ACL2022的论文《Low-Rank Softmax Can Have Unargmaxable Classes in Theory but Rarely in Practice》首先探究了这个问题,正如其标题所言,答案是“理论上存在但实际出现概率很小”。

点击阅读全文...

7 Jun

相对位置编码Transformer的一个理论缺陷与对策

位置编码是Transformer中很重要的一环,在《让研究人员绞尽脑汁的Transformer位置编码》中我们就总结了一些常见的位置编码设计。大体上,我们将Transformer的位置编码分为“绝对位置编码”和“相对位置编码”两类,其中“相对位置编码”在众多NLP/CV的实验表现相对来说更加好些。

然而,我们可以发现,目前相对位置编码几乎都是在Softmax之前的Attention矩阵上进行操作的,这种施加方式实际上都存在一个理论上的缺陷,使得Transformer无法成为“万能拟合器”。本文就来分析这个问题,并探讨一些解决方案。

简单探针

顾名思义,位置编码就是用来给模型补充上位置信息的。那么,如何判断一个模型有没有足够的识别位置的能力呢?笔者之前曾构思过一个简单的探针实验:

对于一个有识别位置能力的模型,应该有能力准确实现如下映射 \begin{equation}\begin{array}{lc} \text{输入:} & [0, 0, \cdots, 0, 0] \\ & \downarrow\\ \text{输出:} & [1, 2, \cdots, n-1, n] \end{array}\end{equation}

点击阅读全文...

28 Jun

“维度灾难”之Hubness现象浅析

这几天读到论文《Exploring and Exploiting Hubness Priors for High-Quality GAN Latent Sampling》,了解到了一个新的名词“Hubness现象”,说的是高维空间中的一种聚集效应,本质上是“维度灾难”的体现之一。论文借助Hubness的概念得到了一个提升GAN模型生成质量的方案,看起来还蛮有意思。所以笔者就顺便去学习了一下Hubness现象的相关内容,记录在此,供大家参考。

坍缩的球

“维度灾难”是一个很宽泛的概念,所有在高维空间中与相应的二维、三维空间版本出入很大的结论,都可以称之为“维度灾难”,比如《n维空间下两个随机向量的夹角分布》中介绍的“高维空间中任何两个向量几乎都是垂直的”。其中,有不少维度灾难现象有着同一个源头——“高维空间单位球与其外切正方体的体积之比逐渐坍缩至0”,包括本文的主题“Hubness现象”亦是如此。

点击阅读全文...

6 Jul

生成扩散模型漫谈(二):DDPM = 自回归式VAE

在文章《生成扩散模型漫谈(一):DDPM = 拆楼 + 建楼》中,我们为生成扩散模型DDPM构建了“拆楼-建楼”的通俗类比,并且借助该类比完整地推导了生成扩散模型DDPM的理论形式。在该文章中,我们还指出DDPM本质上已经不是传统的扩散模型了,它更多的是一个变分自编码器VAE,实际上DDPM的原论文中也是将它按照VAE的思路进行推导的。

所以,本文就从VAE的角度来重新介绍一版DDPM,同时分享一下自己的Keras实现代码和实践经验。

多步突破

在传统的VAE中,编码过程和生成过程都是一步到位的:
\begin{equation}\text{编码:}\,\,x\to z\,,\quad \text{生成:}\,\,z\to x\end{equation}

点击阅读全文...

3 Aug

生成扩散模型漫谈(五):一般框架之SDE篇

在写生成扩散模型的第一篇文章时,就有读者在评论区推荐了宋飏博士的论文《Score-Based Generative Modeling through Stochastic Differential Equations》,可以说该论文构建了一个相当一般化的生成扩散模型理论框架,将DDPM、SDE、ODE等诸多结果联系了起来。诚然,这是一篇好论文,但并不是一篇适合初学者的论文,里边直接用到了随机微分方程(SDE)、Fokker-Planck方程、得分匹配等大量结果,上手难度还是颇大的。

不过,在经过了前四篇文章的积累后,现在我们可以尝试去学习一下这篇论文了。在接下来的文章中,笔者将尝试从尽可能少的理论基础出发,尽量复现原论文中的推导结果。

随机微分

在DDPM中,扩散过程被划分为了固定的$T$步,还是用《生成扩散模型漫谈(一):DDPM = 拆楼 + 建楼》的类比来说,就是“拆楼”和“建楼”都被事先划分为了$T$步,这个划分有着相当大的人为性。事实上,真实的“拆”、“建”过程应该是没有刻意划分的步骤的,我们可以将它们理解为一个在时间上连续的变换过程,可以用随机微分方程(Stochastic Differential Equation,SDE)来描述。

点击阅读全文...