21 Jul

思考:两个椭圆片能粘合成一个立体吗?

前两周又在群里看到一个颇为有趣的问题:两个同样大小的椭圆片可以沿着它们的长轴弯曲,沿着边缘线粘贴,能完美地贴合成一个封闭立体吗?问题来源于知乎《两个椭圆片可否以柱面弯曲边缘完美贴合?》

两个椭圆片粘合图示(截取自知乎上提问的图示)

两个椭圆片粘合图示(截取自知乎上提问的图示)

问题可以用只言片语表达清楚,甚至普通读者都能理解,而问题本身是有一定难度的,这就符合了一个漂亮的问题的条件,所以也就吸引了笔者陆陆续续思考了好多天,最终在昨天算是给出了这类问题通用的列方程思路和数值求解方案,而今天则完成了理论证明,确认两个相同椭圆片总是可以完美贴合

点击阅读全文...

26 Aug

HSIC简介:一个有意思的判断相关性的思路

前几天,在机器之心看到这样的一个推送《彻底解决梯度爆炸问题,新方法不用反向传播也能训练ResNet》,当然,媒体的标题党作风我们暂且无视,主要看内容即可。机器之心的这篇文章,介绍的是论文《The HSIC Bottleneck: Deep Learning without Back-Propagation》的成果,里边提出了一种通过HSIC Bottleneck来训练神经网络的算法。

坦白说,这篇论文笔者还没有看明白,因为对笔者来说里边的新概念有点多了。不过论文中的“HSIC”这个概念引起了笔者的兴趣。经过学习,终于基本地理解了这个HSIC的含义和来龙去脉,于是就有了本文,试图给出HSIC的一个尽可能通俗(但可能不严谨)的理解。

背景

HSIC全称“Hilbert-Schmidt independence criterion”,中文可以叫做“希尔伯特-施密特独立性指标”吧,跟互信息一样,它也可以用来衡量两个变量之间的独立性。

点击阅读全文...

9 Sep

新词发现是NLP的基础任务之一,主要是希望通过无监督发掘一些语言特征(主要是统计特征),来判断一批语料中哪些字符片段可能是一个新词。本站也多次围绕“新词发现”这个话题写过文章,比如:

在这些文章之中,笔者觉得理论最漂亮的是《基于语言模型的无监督分词》,而作为新词发现算法来说综合性能比较好的应该是《更好的新词发现算法》,本文就是复现这篇文章的新词发现算法。

点击阅读全文...

18 Sep

从语言模型到Seq2Seq:Transformer如戏,全靠Mask

相信近一年来(尤其是近半年来),大家都能很频繁地看到各种Transformer相关工作(比如Bert、GPT、XLNet等等)的报导,连同各种基础评测任务的评测指标不断被刷新。同时,也有很多相关的博客、专栏等对这些模型做科普和解读。

单向语言模型图示。每预测一个token,只依赖于前面的token。

单向语言模型图示。每预测一个token,只依赖于前面的token。

俗话说,“外行看热闹,内行看门道”,我们不仅要在“是什么”这个层面去理解这些工作,我们还需要思考“为什么”。这个“为什么”不仅仅是“为什么要这样做”,还包括“为什么可以这样做”。比如,在谈到XLNet的乱序语言模型时,我们或许已经从诸多介绍中明白了乱序语言模型的好处,那不妨更进一步思考一下:

为什么Transformer可以实现乱序语言模型?是怎么实现的?RNN可以实现吗?

本文从对Attention矩阵进行Mask的角度,来分析为什么众多Transformer模型可以玩得如此“出彩”的基本原因,正如标题所述“Transformer如戏,全靠Mask”,这是各种花式Transformer模型的重要“门道”之一。

读完本文,你或许可以了解到:

1、Attention矩阵的Mask方式与各种预训练方案的关系;

2、直接利用预训练的Bert模型来做Seq2Seq任务。

点击阅读全文...

16 Jan

从几何视角来理解模型参数的初始化策略

对于复杂模型来说,参数的初始化显得尤为重要。糟糕的初始化,很多时候已经不单是模型效果变差的问题了,还更有可能是模型根本训练不动或者不收敛。在深度学习中常见的自适应初始化策略是Xavier初始化,它是从正态分布$\mathcal{N}\left(0,\frac{2}{fan_{in} + fan_{out}}\right)$中随机采样而构成的初始权重,其中$fan_{in}$是输入的维度而$fan_{out}$是输出的维度。其他初始化策略基本上也类似,只不过假设有所不同,导致最终形式略有差别。

标准的初始化策略的推导是基于概率统计的,大概的思路是假设输入数据的均值为0、方差为1,然后期望输出数据也保持均值为0、方差为1,然后推导出初始变换应该满足的均值和方差条件。这个过程理论上没啥问题,但在笔者看来依然不够直观,而且推导过程的假设有点多。本文则希望能从几何视角来理解模型的初始化方法,给出一个更直观的推导过程。

信手拈来的正交

前者时间笔者写了《n维空间下两个随机向量的夹角分布》,其中的一个推论是

推论1: 高维空间中的任意两个随机向量几乎都是垂直的。

点击阅读全文...

29 Jan

抛开约束,增强模型:一行代码提升albert表现

本文标题看起来有点“标题党”了,不过所作改动放到bert4keras框架下,确实是一行代码的变动,至于是否有提升,这个笔者不敢打包票,不过测了几个算是比较有代表性的任务,均显示持平甚至有提升,所以标题说的也基本是事实。

那究竟是什么改动呢?其实一句话也能讲清楚:

在下游任务中,放弃albert的权重共享的约束,也就是把albert当bert用。

具体思路细节,请接着看下去~

点击阅读全文...

24 Feb

CRF用过了,不妨再了解下更快的MEMM?

HMM、MEMM、CRF被称为是三大经典概率图模型,在深度学习之前的机器学习时代,它们被广泛用于各种序列标注相关的任务中。一个有趣的现象是,到了深度学习时代,HMM和MEMM似乎都“没落”了,舞台上就只留下CRF。相信做NLP的读者朋友们就算没亲自做过也会听说过BiLSTM+CRF做中文分词、命名实体识别等任务,却几乎没有听说过BiLSTM+HMM、BiLSTM+MEMM的,这是为什么呢?

今天就让我们来学习一番MEMM,并且通过与CRF的对比,来让我们更深刻地理解概率图模型的思想与设计。

模型推导

MEMM全称Maximum Entropy Markov Model,中文名可译为“最大熵马尔可夫模型”。不得不说,这个名字可能会吓退80%的初学者:最大熵还没搞懂,马尔可夫也不认识,这两个合起来怕不是天书?而事实上,不管是MEMM还是CRF,它们的模型都远比它们的名字来得简单,它们的概念和设计都非常朴素自然,并不难理解。

点击阅读全文...

9 Mar

Seq2Seq中Exposure Bias现象的浅析与对策

前些天笔者写了《CRF用过了,不妨再了解下更快的MEMM?》,里边提到了MEMM的局部归一化和CRF的全局归一化的优劣。同时,笔者联想到了Seq2Seq模型,因为Seq2Seq模型的典型训练方案Teacher Forcing就是一个局部归一化模型,所以它也存在着局部归一化所带来的毛病——也就是我们经常说的“Exposure Bias”。带着这个想法,笔者继续思考了一翻,将最后的思考结果记录在此文。

经典的Seq2Seq模型图示

经典的Seq2Seq模型图示

本文算是一篇进阶文章,适合对Seq2Seq模型已经有一定的了解、希望进一步提升模型的理解或表现的读者。关于Seq2Seq的入门文章,可以阅读旧作《玩转Keras之seq2seq自动生成标题》《从语言模型到Seq2Seq:Transformer如戏,全靠Mask》

本文的内容大致为:

1、Exposure Bias的成因分析及例子;

2、简单可行的缓解Exposure Bias问题的策略。

点击阅读全文...