17 Sep

变分自编码器(四):一步到位的聚类方案

由于VAE中既有编码器又有解码器(生成器),同时隐变量分布又被近似编码为标准正态分布,因此VAE既是一个生成模型,又是一个特征提取器。在图像领域中,由于VAE生成的图片偏模糊,因此大家通常更关心VAE作为图像特征提取器的作用。提取特征都是为了下一步的任务准备的,而下一步的任务可能有很多,比如分类、聚类等。本文来关心“聚类”这个任务。

一般来说,用AE或者VAE做聚类都是分步来进行的,即先训练一个普通的VAE,然后得到原始数据的隐变量,接着对隐变量做一个K-Means或GMM之类的。但是这样的思路的整体感显然不够,而且聚类方法的选择也让我们纠结。本文介绍基于VAE的一个“一步到位”的聚类思路,它同时允许我们完成无监督地完成聚类和条件生成。

理论

一般框架

回顾VAE的loss(如果没印象请参考《变分自编码器(二):从贝叶斯观点出发》):
$$KL\Big(p(x,z)\Big\Vert q(x,z)\Big) = \iint p(z|x)\tilde{p}(x)\ln \frac{p(z|x)\tilde{p}(x)}{q(x|z)q(z)} dzdx\tag{1}$$
通常来说,我们会假设$q(z)$是标准正态分布,$p(z|x),q(x|z)$是条件正态分布,然后代入计算,就得到了普通的VAE的loss。

点击阅读全文...

26 Dec

【学习清单】最近比较重要的GAN进展论文

这篇文章简单列举一下我认为最近这段时间中比较重要的GAN进展论文,这基本也是我在学习GAN的过程中主要去研究的论文清单。

生成模型之味

GAN是一个大坑,尤其像我这样的业余玩家,一头扎进去很久也很难有什么产出,尤其是各个大公司拼算力搞出来一个个大模型,个人几乎都没法玩了。但我总觉得,真的去碰了生成模型,才觉得自己碰到了真正的机器学习。这一点,不管在图像中还是文本中都是如此。所以,我还是愿意去关注生成模型。

当然,GAN不是生成模型的唯一选择,却是一个非常有趣的选择。在图像中至少有GAN、flow、pixelrnn/pixelcnn这几种选择,但要说潜力,我还是觉得GAN才是最具前景的,不单是因为效果,主要是因为它那对抗的思想。而在文本中,事实上seq2seq机制就是一个概率生成模型了,而pixelrnn这类模型,实际上就是模仿着seq2seq来做的,当然也有用GAN做文本生成的研究(不过基本上都涉及到了强化学习)。也就是说,其实在NLP中,生成模型也有很多成果,哪怕你主要是研究NLP的,也终将碰到生成模型。

好了,话不多说,还是赶紧把清单列一列,供大家参考,也作为自己的备忘。

点击阅读全文...

22 Oct

RSGAN:对抗模型中的“图灵测试”思想

这两天无意间发现一个非常有意义的工作,称为“相对GAN”,简称RSGAN,来自文章《The relativistic discriminator: a key element missing from standard GAN》,据说该文章还得到了GAN创始人Goodfellow的点赞。这篇文章提出了用相对的判别器来取代标准GAN原有的判别器,使得生成器的收敛更为迅速,训练更为稳定。

可惜的是,这篇文章仅仅从训练和实验角度对结果进行了论述,并没有进行更深入的分析,以至于不少人觉得这只是GAN训练的一个trick。但是在笔者来看,RSGAN具有更为深刻的含义,甚至可以看成它已经开创了一个新的GAN流派。所以,笔者决定对RSGAN模型及其背后的内涵做一个基本的介绍。不过需要指出的是,除了结果一样之外,本文的介绍过程跟原论文相比几乎没有重合之处。

“图灵测试”思想

SGAN

SGAN就是标准的GAN(Standard GAN)。就算没有做过GAN研究的读者,相信也从各种渠道了解到GAN的大概原理:“造假者”不断地进行造假,试图愚弄“鉴别者”;“鉴别者”不断提高鉴别技术,以分辨出真品和赝品。两者相互竞争,共同进步,直到“鉴别者”无法分辨出真、赝品了,“造假者”就功成身退了。

在建模时,通过交替训练实现这个过程:固定生成器,训练一个判别器(二分类模型),将真实样本输出1,将伪造样本输出0;然后固定判别器,训练生成器让伪造样本尽可能输出1,后面这一步不需要真实样本参与。

问题所在

然而,这个建模过程似乎对判别器的要求过于苛刻了,因为判别器是孤立运作的:训练生成器时,真实样本没有参与,所以判别器必须把关于真实样本的所有属性记住,这样才能指导生成器生成更真实的样本。

点击阅读全文...

22 Feb

巧断梯度:单个loss实现GAN模型

我们知道普通的模型都是搭好架构,然后定义好loss,直接扔给优化器训练就行了。但是GAN不一样,一般来说它涉及有两个不同的loss,这两个loss需要交替优化。现在主流的方案是判别器和生成器都按照1:1的次数交替训练(各训练一次,必要时可以给两者设置不同的学习率,即TTUR),交替优化就意味我们需要传入两次数据(从内存传到显存)、执行两次前向传播和反向传播。

如果我们能把这两步合并起来,作为一步去优化,那么肯定能节省时间的,这也就是GAN的同步训练。

(注:本文不是介绍新的GAN,而是介绍GAN的新写法,这只是一道编程题,不是一道算法题~)

如果在TF中

点击阅读全文...

28 Apr

继续“让Keras更酷一些”之旅。

今天我们会用Keras实现灵活地输出任意中间变量,还有无缝地进行权重滑动平均,最后顺便介绍一下生成器的进程安全写法

首先是输出中间变量。在自定义层时,我们可能希望查看中间变量,这些需求有些是比较容易实现的,比如查看中间某个层的输出,只需要将截止到这个层的部分模型保存为一个新模型即可,但有些需求是比较困难的,比如在使用Attention层时我们可能希望查看那个Attention矩阵的值,如果用构建新模型的方法则会非常麻烦。而本文则给出一种简单的方法,彻底满足这个需求。

接着是权重滑动平均。权重滑动平均是稳定、加速模型训练甚至提升模型效果的一种有效方法,很多大型模型(尤其是GAN)几乎都用到了权重滑动平均。一般来说权重滑动平均是作为优化器的一部分,所以一般需要重写优化器才能实现它。本文介绍一个权重滑动平均的实现,它可以无缝插入到任意Keras模型中,不需要自定义优化器。

至于生成器的进程安全写法,则是因为Keras读取生成器的时候,用到了多进程,如果生成器本身也包含了一些多进程操作,那么可能就会导致异常,所以需要解决这个这个问题。

点击阅读全文...

27 Aug

自己实现了一个bert4keras

分享个人实现的bert4keras:

这是笔者重新实现的keras版的bert,致力于用尽可能清爽的代码来实现keras下调用bert。

说明

目前已经基本实现bert,并且能成功加载官方权重,经验证模型输出跟keras-bert一致,大家可以放心使用。

本项目的初衷是为了修改、定制上的方便,所以可能会频繁更新。

因此欢迎star,但不建议fork,因为你fork下来的版本可能很快就过期了。

点击阅读全文...

29 Jun

基于Bert的NL2SQL模型:一个简明的Baseline

在之前的文章《当Bert遇上Keras:这可能是Bert最简单的打开姿势》中,我们介绍了基于微调Bert的三个NLP例子,算是体验了一把Bert的强大和Keras的便捷。而在这篇文章中,我们再添一个例子:基于Bert的NL2SQL模型。

NL2SQL的NL也就是Natural Language,所以NL2SQL的意思就是“自然语言转SQL语句”,近年来也颇多研究,它算是人工智能领域中比较实用的一个任务。而笔者做这个模型的契机,则是今年我司举办的首届“中文NL2SQL挑战赛”

首届中文NL2SQL挑战赛,使用金融以及通用领域的表格数据作为数据源,提供在此基础上标注的自然语言与SQL语句的匹配对,希望选手可以利用数据训练出可以准确转换自然语言到SQL的模型。

这个NL2SQL比赛算是今年比较大型的NLP赛事了,赛前投入了颇多人力物力进行宣传推广,比赛的奖金也颇丰富,唯一的问题是NL2SQL本身算是偏冷门的研究领域,所以注定不会太火爆,为此主办方也放出了一个Baseline,基于Pytorch写的,希望能降低大家的入门难度。

抱着“Baseline怎么能少得了Keras版”的心态,我抽时间自己用Keras做了做这个比赛,为了简化模型并且提升效果也加载了预训练的Bert模型,最终形成此文。

点击阅读全文...

20 Aug

开源一版DGCNN阅读理解问答模型(Keras版)

去年写过《基于CNN的阅读理解式问答模型:DGCNN》,介绍了一个纯卷积的简单的问答模型。当时是用Tensorflow实现的,而且没有开源,这几天抽空用Keras复现了一下,决定开源。

模型综述

关于DGCNN的基本介绍,这里不再赘述。本文的模型并不是之前模型的重复实现,而是有所改动,这里只介绍一下被改动的地方。

1、这里放出的模型,线下验证集的分数大概是0.72(之前大约是0.75);

2、本次模型以字为单位,使用笔者之前探索出来的“字词混合Embedding”(之前是以词为单位);

3、本次模型完全去掉了人工特征(之前用了8个人工特征);

4、本次模型去掉了位置Embedding(之前将位置Embedding拼接到输入上);

5、模型架构和训练细节有所微调。

点击阅读全文...