变分自编码器(四):一步到位的聚类方案
By 苏剑林 | 2018-09-17 | 227572位读者 |由于VAE中既有编码器又有解码器(生成器),同时隐变量分布又被近似编码为标准正态分布,因此VAE既是一个生成模型,又是一个特征提取器。在图像领域中,由于VAE生成的图片偏模糊,因此大家通常更关心VAE作为图像特征提取器的作用。提取特征都是为了下一步的任务准备的,而下一步的任务可能有很多,比如分类、聚类等。本文来关心“聚类”这个任务。
一般来说,用AE或者VAE做聚类都是分步来进行的,即先训练一个普通的VAE,然后得到原始数据的隐变量,接着对隐变量做一个K-Means或GMM之类的。但是这样的思路的整体感显然不够,而且聚类方法的选择也让我们纠结。本文介绍基于VAE的一个“一步到位”的聚类思路,它同时允许我们完成无监督地完成聚类和条件生成。
理论 #
一般框架 #
回顾VAE的loss(如果没印象请参考《变分自编码器(二):从贝叶斯观点出发》):
$$KL\Big(p(x,z)\Big\Vert q(x,z)\Big) = \iint p(z|x)\tilde{p}(x)\ln \frac{p(z|x)\tilde{p}(x)}{q(x|z)q(z)} dzdx\tag{1}$$
通常来说,我们会假设$q(z)$是标准正态分布,$p(z|x),q(x|z)$是条件正态分布,然后代入计算,就得到了普通的VAE的loss。
然而,也没有谁规定隐变量一定是连续变量吧?这里我们就将隐变量定为$(z, y)$,其中$z$是一个连续变量,代表编码向量;$y$是离散的变量,代表类别。直接把$(1)$中的$z$替换为$(z,y)$,就得到
$$KL\Big(p(x,z,y)\Big\Vert q(x,z,y)\Big) = \sum_y \iint p(z,y|x)\tilde{p}(x)\ln \frac{p(z,y|x)\tilde{p}(x)}{q(x|z,y)q(z,y)} dzdx\tag{2}$$
这就是用来做聚类的VAE的loss了。
分步假设 #
啥?就完事了?呃,是的,如果只考虑一般化的框架,$(2)$确实就完事了。
不过落实到实践中,$(2)$可以有很多不同的实践方案,这里介绍比较简单的一种。首先我们要明确,在$(2)$中,我们只知道$\tilde{p}(x)$(通过一批数据给出的经验分布),其他都是没有明确下来的。于是为了求解$(2)$,我们需要设定一些形式。一种选取方案为
$$p(z,y|x)=p(y|z)p(z|x),\quad q(x|z,y)=q(x|z),\quad q(z,y)=q(z|y)q(y)\tag{3}$$
代入$(2)$得到
$$KL\Big(p(x,z,y)\Big\Vert q(x,z,y)\Big) = \sum_y \iint p(y|z)p(z|x)\tilde{p}(x)\ln \frac{p(y|z)p(z|x)\tilde{p}(x)}{q(x|z)q(z|y)q(y)} dzdx\tag{4}$$
其实$(4)$式还是相当直观的,它分布描述了编码和生成过程:
1、从原始数据中采样到$x$,然后通过$p(z|x)$可以得到编码特征$z$,然后通过分类器$p(y|z)$对编码特征进行分类,从而得到类别;
2、从分布$q(y)$中选取一个类别$y$,然后从分布$q(z|y)$中选取一个随机隐变量$z$,然后通过生成器$q(x|z)$解码为原始样本。
具体模型 #
$(4)$式其实已经很具体了,我们只需要沿用以往VAE的做法:$p(z|x)$一般假设为均值为$\mu(x)$方差为$\sigma^2(x)$的正态分布,$q(x|z)$一般假设为均值为$G(z)$方差为常数的正态分布(等价于用MSE作为loss),$q(z|y)$可以假设为均值为$\mu_y$方差为1的正态分布,至于剩下的$q(y),p(y|z)$,$q(y)$可以假设为均匀分布(它就是个常数),也就是希望每个类大致均衡,而$p(y|z)$是对隐变量的分类器,随便用个softmax的网络就可以拟合了。
最后,可以形象地将$(4)$改写为
$$\mathbb{E}_{x\sim\tilde{p}(x)}\Big[-\log q(x|z) + \sum_y p(y|z) \log \frac{p(z|x)}{q(z|y)} + KL\big(p(y|z)\big\Vert q(y)\big)\Big],\quad z\sim p(z|x) \tag{5}$$
其中$z\sim p(z|x)$是重参数操作,而方括号中的三项loss,各有各的含义:
1、$-\log q(x|z)$希望重构误差越小越好,也就是$z$尽量保留完整的信息;
2、$\sum_y p(y|z) \log \frac{p(z|x)}{q(z|y)}$希望$z$能尽量对齐某个类别的“专属”的正态分布,就是这一步起到聚类的作用;
3、$KL\big(p(y|z)\big\Vert q(y)\big)$希望每个类的分布尽量均衡,不会发生两个几乎重合的情况(坍缩为一个类)。当然,有时候可能不需要这个先验要求,那就可以去掉这一项。
实验 #
实验代码自然是Keras完成的了(^_^),在mnist和fashion-mnist上做了实验,表现都还可以。实验环境:Keras 2.2 + tensorflow 1.8 + Python 2.7。
代码实现 #
代码位于:https://github.com/bojone/vae/blob/master/vae_keras_cluster.py
其实注释应该比较清楚了,而且相比普通的VAE改动不大。可能稍微有难度的是$\sum_y p(y|z) \log \frac{p(z|x)}{q(z|y)}$这个怎么实现。首先我们代入
$$\begin{aligned}p(z|x)&=\frac{1}{\prod\limits_{i=1}^d\sqrt{2\pi\sigma_i^2(x)}}\exp\left\{-\frac{1}{2}\left\Vert\frac{z - \mu(x)}{\sigma(x)}\right\Vert^2\right\}\\
q(z|y)&=\frac{1}{(2\pi)^{d/2}}\exp\left\{-\frac{1}{2}\left\Vert z - \mu_y\right\Vert^2\right\}\end{aligned}\tag{6}$$
得到
$$\log \frac{p(z|x)}{q(z|y)}=-\frac{1}{2}\sum_{i=1}^d \log \sigma_i^2(x)-\frac{1}{2}\left\Vert\frac{z - \mu(x)}{\sigma(x)}\right\Vert^2 + \frac{1}{2}\left\Vert z - \mu_y\right\Vert^2 \tag{7}$$
注意其实第二项是多余的,因为重参数操作告诉我们$z = \varepsilon\otimes \sigma(x) + \mu(x),\,\varepsilon\sim \mathcal{N}(0,1)$,所以第二项实际上只是$-\Vert \varepsilon\Vert^2/2$,跟参数无关,所以$$\log \frac{p(z|x)}{q(z|y)}\sim -\frac{1}{2}\sum_{i=1}^d \log \sigma_i^2(x) + \frac{1}{2}\left\Vert z - \mu_y\right\Vert^2 \tag{8}$$
然后因为$y$是离散的,所以事实上$\sum_y p(y|z) \log \frac{p(z|x)}{q(z|y)}$就是一个矩阵乘法(相乘然后对某个公共变量求和,就是矩阵乘法的一般形式),用K.batch_dot实现。
其他的话,读者应该清楚普通的VAE的实现过程,然后才看本文的内容和代码,不然估计是一脸懵的。
mnist #
这里是mnist的实验结果图示,包括类内样本图示和按类采样图示。最后还简单估算了一下,以每一类对应的数目最多的那个真实标签为类标签的话,最终的test准确率大约有83%,对比这篇文章《Unsupervised Deep Embedding for Clustering Analysis》的结果(最高也是84%左右),感觉应该很不错了。
聚类图示 #
按类采样 #
fashion-mnist #
这里是fashion-mnist的实验结果图示,包括类内样本图示和按类采样图示,最终的test准确率大约有58.5%。
聚类图示 #
按类采样 #
总结 #
文章简单地实现了一下基于VAE的聚类算法,算法的特点就是一步到位,结合“编码”、“聚类”和“生成”三个任务同时完成,思想是对VAE的loss的一般化。
感觉还有一定的提升空间,比如式$(4)$只是式$(2)$的一个例子,还可以考虑更加一般的情况。代码中的encoder和decoder也都没有经过仔细调优,仅仅是验证想法所用。
转载到请包括本文地址:https://spaces.ac.cn/archives/5887
更详细的转载事宜请参考:《科学空间FAQ》
如果您还有什么疑惑或建议,欢迎在下方评论区继续讨论。
如果您觉得本文还不错,欢迎分享/打赏本文。打赏并非要从中获得收益,而是希望知道科学空间获得了多少读者的真心关注。当然,如果你无视它,也不会影响你的阅读。再次表示欢迎和感谢!
如果您需要引用本文,请参考:
苏剑林. (Sep. 17, 2018). 《变分自编码器(四):一步到位的聚类方案 》[Blog post]. Retrieved from https://spaces.ac.cn/archives/5887
@online{kexuefm-5887,
title={变分自编码器(四):一步到位的聚类方案},
author={苏剑林},
year={2018},
month={Sep},
url={\url{https://spaces.ac.cn/archives/5887}},
}
August 24th, 2023
苏老师,怎么理解q(y)是一个均匀分布呢?
均匀分布的概率就是常数。
August 26th, 2023
苏老师,glow是否也可以像您这篇文章说的做聚类,似乎可以,但不知从何入手?
很难。因为flow-based模型做的是精确的最大似然,而如果用来做聚类的话,相当于要最大化$\log \sum_y q(x|y)q(y)$,看上去是难以优化的。
August 29th, 2023
苏老师,我想做一个具有监督分类功能的glow,我能不能这么做:
用最终的z去输入进一个softmax分类器,得到模型的预测分类类别y,这个y一边我使用真实标签通过交叉熵损失做为有监督的分类指导,一方面我设置10个mu,sigma(minist数据集),并设置为可训练的参数,每个样本我都用y去选择这个样本对应的编码向量z的先验分布的均值和方差,也就是在刚才说的那10个(mu,sigma)之中选,这样的优化策略是为了是为了使我的glow具有条件生成功能的同时,还具有分类的功能。不知道这种方案行不行...(担心自己没有说清楚自己的困惑,但已经很努力的表达了...)
你设置10个均值方差的时候,就已经相当于在训练条件生成模型$p(x|y)$,有了$p(x|y)$,根据贝叶斯公式就可以求出$p(y|x)$,似乎不用另外训练分类器。当然你这样另外训练分类器大概率也是可行的。
谢谢苏老师,已经实现了
苏老师,您说的根据贝叶斯公式求出p(y|x),具体怎么做呢?能点拨一下吗?我发现另外训练分类器有点受局限。
$p(y|x)=\frac{p(x|y)p(y)}{p(x)}\propto p(x|y)p(y)$,通过统计求出$y$的分布$p(y)$,$p(x|y)$则可以通过条件生成模型算出,于是可以归一化求出$p(y|x)$。代价是计算量比较大,有多少个$y$就是要计算多少次$p(x|y)$。