26 Dec

【学习清单】最近比较重要的GAN进展论文

这篇文章简单列举一下我认为最近这段时间中比较重要的GAN进展论文,这基本也是我在学习GAN的过程中主要去研究的论文清单。

生成模型之味

GAN是一个大坑,尤其像我这样的业余玩家,一头扎进去很久也很难有什么产出,尤其是各个大公司拼算力搞出来一个个大模型,个人几乎都没法玩了。但我总觉得,真的去碰了生成模型,才觉得自己碰到了真正的机器学习。这一点,不管在图像中还是文本中都是如此。所以,我还是愿意去关注生成模型。

当然,GAN不是生成模型的唯一选择,却是一个非常有趣的选择。在图像中至少有GAN、flow、pixelrnn/pixelcnn这几种选择,但要说潜力,我还是觉得GAN才是最具前景的,不单是因为效果,主要是因为它那对抗的思想。而在文本中,事实上seq2seq机制就是一个概率生成模型了,而pixelrnn这类模型,实际上就是模仿着seq2seq来做的,当然也有用GAN做文本生成的研究(不过基本上都涉及到了强化学习)。也就是说,其实在NLP中,生成模型也有很多成果,哪怕你主要是研究NLP的,也终将碰到生成模型。

好了,话不多说,还是赶紧把清单列一列,供大家参考,也作为自己的备忘。

点击阅读全文...

14 Jan

基于CNN和序列标注的对联机器人

缘起

前几天在量子位公众号上看到了《这个脑洞清奇的对联AI,大家都玩疯了》一文,觉得挺有意思,难得的是作者还整理并公开了数据集,所以决定自己尝试一下。

动手

“对对联”,我们可以看成是一个句子生成任务,可以用seq2seq完成,跟笔者之前写的《玩转Keras之seq2seq自动生成标题》一样,稍微修改一下输入即可。上面提到的文章所用的方法也是seq2seq,可见这算是标准做法了。

点击阅读全文...

30 Oct

缅怀金庸 | 愿你登上10930小行星继续翱翔

金庸大师

金庸大师

金庸走了,享年94岁。

虽然说这些高龄大师们,不管是科学家还是文学家,他们在晚年基本上都不会有什么产出,过于理性的话会有“去了就去了,好像也没有什么损失”的感觉。然而,事实是大师的逝去总让我们有一种悲伤的震撼感,总让我们觉得似乎一个时代又逝去了。霍金是这样,金庸也是这样。

对于金老爷子来说,是一个武侠时代过去了,是一个江湖过去了。

飞雪连天射白鹿,笑书神侠倚碧鸳。

这个对联描述了金庸的14部作品,加上《越女剑》,就构成了他的15部武侠小说。金庸用这15部小说,描述了一个个活灵活现的江湖,不,说江湖好象都太小了,读完这15部作品,你会感觉他描述了整个中国几千年的历史、整个社会。

点击阅读全文...

7 Nov

WGAN-div:一个默默无闻的WGAN填坑者

今天我们来谈一下Wasserstein散度,简称“W散度”。注意,这跟Wasserstein距离(Wasserstein distance,简称“W距离”,又叫Wasserstein度量、Wasserstein metric)是不同的两个东西。

本文源于论文《Wasserstein Divergence for GANs》,论文中提出了称为WGAN-div的GAN训练方案。这是一篇我很是欣赏却默默无闻的paper,我只是找文献时偶然碰到了它。不管英文还是中文界,它似乎都没有流行起来,但是我感觉它是一个相当漂亮的结果。

WGAN-div的部分样本(2w iter)

WGAN-div的部分样本(2w iter)

如果读者需要入门一下WGAN的相关知识,不妨请阅读拙作《互怼的艺术:从零直达WGAN-GP》

WGAN

我们知道原始的GAN(SGAN)会有可能存在梯度消失的问题,因此WGAN横空出世了。

W距离

WGAN引入了最优传输里边的W距离来度量两个分布的距离:
\begin{equation}W_c[\tilde{p}(x), q(x)] = \inf_{\gamma\in \Pi(\tilde{p}(x), q(x))} \mathbb{E}_{(x,y)\sim \gamma}[c(x,y)] \end{equation}
这里的$\tilde{p}(x)$是真实样本的分布,$q(x)$是伪造分布,$c(x,y)$是传输成本,论文中用的是$c(x,y)=\Vert x-y\Vert$;而$\gamma\in \Pi(\tilde{p}(x), q(x))$的意思是说:$\gamma$是任意关于$x, y$的二元分布,其边缘分布则为$\tilde{p}(x)$和$q(y)$。直观来看,$\gamma$描述了一个运输方案,而$c(x,y)$则是运输成本,$W_c[\tilde{p}(x), q(x)]$就是说要找到成本最低的那个运输方案所对应的成本作为分布度量。

点击阅读全文...

30 Jan

“看那挖坑的人,有啥不一样~”

“看那挖坑的人,有啥不一样~”

在这个系列中,我们尝试从能量的视角理解GAN。我们会发现这个视角如此美妙和直观,甚至让人拍案叫绝。

本视角直接受启发于Benjio团队的新作《Maximum Entropy Generators for Energy-Based Models》,这篇文章前几天出现在arxiv上。当然,能量模型与GAN的联系由来已久,并不是这篇文章的独创,只不过这篇文章做得仔细和完善一些。另外本文还补充了自己的一些理解和思考上去,力求更为易懂和完整。

作为第一篇文章,我们先来给出一个直白的类比推导:GAN实际上就是一场前仆后继(前挖后跳?)的“挖坑”与“跳坑”之旅~

总的来说,本文的大致内容如下:

1、给出了GAN/WGAN的清晰直观的能量图像;

2、讨论了判别器(能量函数)的训练情况和策略;

3、指出了梯度惩罚一个非常漂亮而直观的能量解释;

4、讨论了GAN中优化器的选择问题。

点击阅读全文...

5 Dec

万能的seq2seq:基于seq2seq的阅读理解问答

今天给bert4keras新增加了一个例子:阅读理解式问答(task_reading_comprehension_by_seq2seq.py),语料跟之前一样,都是用WebQA和SogouQA,最终的得分在0.77左右(单模型,没精调)。

用seq2seq做阅读理解的模型图示

用seq2seq做阅读理解的模型图示

方法简述

由于这次主要目的是给bert4keras增加demo,因此效率就不是主要关心的目标了。这次的目标主要是通用性和易用性,所以用了最万能的方案——seq2seq来实现做阅读理解。

用seq2seq做的话,基本不用怎么关心模型设计,只要把篇章和问题拼接起来,然后预测答案就行了。此外,seq2seq的方案还自然地包括了判断篇章有无答案的方法,以及自然地导出一种多篇章投票的思路。总而言之,不考虑效率的话,seq2seq做阅读理解是一种相当优雅的方案。

这次实现seq2seq还是用UNILM的方案,如果还不了解的读者,可以先阅读《从语言模型到Seq2Seq:Transformer如戏,全靠Mask》了解相应内容。

点击阅读全文...

27 Jul

为节约而生:从标准Attention到稀疏Attention

attention, please!

attention, please!

如今NLP领域,Attention大行其道,当然也不止NLP,在CV领域Attention也占有一席之地(Non Local、SAGAN等)。在18年初《〈Attention is All You Need〉浅读(简介+代码)》一文中,我们就已经讨论过Attention机制,Attention的核心在于$\boldsymbol{Q},\boldsymbol{K},\boldsymbol{V}$三个向量序列的交互和融合,其中$\boldsymbol{Q},\boldsymbol{K}$的交互给出了两两向量之间的某种相关度(权重),而最后的输出序列则是把$\boldsymbol{V}$按照权重求和得到的。

显然,众多NLP&CV的成果已经充分肯定了Attention的有效性。本文我们将会介绍Attention的一些变体,这些变体的共同特点是——“为节约而生”——既节约时间,也节约显存

背景简述

《Attention is All You Need》一文讨论的我们称之为“乘性Attention”,目前用得比较广泛的也就是这种Attention:
\begin{equation}Attention(\boldsymbol{Q},\boldsymbol{K},\boldsymbol{V}) = softmax\left(\frac{\boldsymbol{Q}\boldsymbol{K}^{\top}}{\sqrt{d_k}}\right)\boldsymbol{V}\end{equation}

点击阅读全文...

19 Oct

让我们不厌其烦地回顾一下:最小熵原理是一个无监督学习的原理,“熵”就是学习成本,而降低学习成本是我们的不懈追求,所以通过“最小化学习成本”就能够无监督地学习出很多符合我们认知的结果,这就是最小熵原理的基本理念。

这篇文章里,我们会介绍一种相当漂亮的聚类算法,它同样也体现了最小熵原理,或者说它可以通过最小熵原理导出来,名为InfoMap,或者MapEquation。事实上InfoMap已经是2007年的成果了,最早的论文是《Maps of random walks on complex networks reveal community structure》,虽然看起来很旧,但我认为它仍是当前最漂亮的聚类算法,因为它不仅告诉了我们“怎么聚类”,更重要的是给了我们一个“为什么要聚类”的优雅的信息论解释,并从这个解释中直接导出了整个聚类过程。

一个复杂有向图网络示意图。图片来自InfoMap最早的论文《Maps of random walks on complex networks reveal community structure》

一个复杂有向图网络示意图。图片来自InfoMap最早的论文《Maps of random walks on complex networks reveal community structure》

当然,它的定位并不仅仅局限在聚类上,更准确地说,它是一种图网络上的“社区发现”算法。所谓社区发现(Community Detection),大概意思是给定一个有向/无向图网络,然后找出这个网络上的“抱团”情况,至于详细含义,大家可以自行搜索一下。简单来说,它跟聚类相似,但是比聚类的含义更丰富。(还可以参考《什么是社区发现?》

点击阅读全文...