1 May

今天我们分享一下论文《Score identity Distillation: Exponentially Fast Distillation of Pretrained Diffusion Models for One-Step Generation》,顾名思义,这是一篇探讨如何更快更好地蒸馏扩散模型的新论文。

即便没有做过蒸馏,大家应该也能猜到蒸馏的常规步骤:随机采样大量输入,然后用扩散模型生成相应结果作为输出,用这些输入输出作为训练数据对,来监督训练一个新模型。然而,众所周知作为教师的原始扩散模型通常需要多步(比如1000步)迭代才能生成高质量输出,所以且不论中间训练细节如何,该方案的一个显著缺点是生成训练数据太费时费力。此外,蒸馏之后的学生模型通常或多或少都有效果损失。

有没有方法能一次性解决这两个缺点呢?这就是上述论文试图要解决的问题。

点击阅读全文...

29 May

Transformer升级之路:18、RoPE的底数选择原则

我们知道,在RoPE中频率的计算公式为$\theta_i = b^{-2i/d}$,底数$b$默认值为10000。目前Long Context的主流做法之一是,先在$b=10000$上用短文本预训练,然后调大$b$并在长文本微调,其出发点是《Transformer升级之路:10、RoPE是一种β进制编码》里介绍的NTK-RoPE,它本身有较好长度外推性,换用更大的$b$再微调相比不加改动的微调,起始损失更小,收敛也更快。该过程给人的感觉是:调大$b$完全是因为“先短后长”的训练策略,如果一直都用长文本训练似乎就没必要调大$b$了?

上周的论文《Base of RoPE Bounds Context Length》试图回答这个问题,它基于一个期望性质研究了$b$的下界,由此指出更大的训练长度本身就应该选择更大的底数,与训练策略无关。整个分析思路颇有启发性,接下来我们一起来品鉴一番。

点击阅读全文...

5 Jun

重温SSM(二):HiPPO的一些遗留问题

书接上文,在上一篇文章《重温SSM(一):线性系统和HiPPO矩阵》中,我们详细讨论了HiPPO逼近框架其HiPPO矩阵的推导,其原理是通过正交函数基来动态地逼近一个实时更新的函数,其投影系数的动力学正好是一个线性系统,而如果以正交多项式为基,那么线性系统的核心矩阵我们可以解析地求解出来,该矩阵就称为HiPPO矩阵。

当然,上一篇文章侧重于HiPPO矩阵的推导,并没有对它的性质做进一步分析,此外诸如“如何离散化以应用于实际数据”、“除了多项式基外其他基是否也可以解析求解”等问题也没有详细讨论到。接下来我们将补充探讨相关问题。

离散格式

假设读者已经阅读并理解上一篇文章的内容,那么这里我们就不再进行过多的铺垫。在上一篇文章中,我们推导出了两类线性ODE系统,分别是:
\begin{align}
&\text{HiPPO-LegT:}\quad x'(t) = Ax(t) + Bu(t) \label{eq:legt-ode}\\[5pt]
&\text{HiPPO-LegS:}\quad x'(t) = \frac{A}{t}x(t) + \frac{B}{t}u(t) \label{eq:legs-ode}\end{align}
其中$A,B$是与时间$t$无关的常数矩阵,HiPPO矩阵主要指矩阵$A$。在这一节中,我们讨论这两个ODE的离散化。

点击阅读全文...

20 Jun

重温SSM(三):HiPPO的高效计算(S4)

前面我们用两篇文章《重温SSM(一):线性系统和HiPPO矩阵》《重温SSM(二):HiPPO的一些遗留问题》介绍了HiPPO的思想和推导——通过正交函数基对持续更新的函数进行实时逼近,其拟合系数的动力学正好可以表示为一个线性ODE系统,并且对于特定的基底以及逼近方式,我们可以将线性系统的关键矩阵精确地算出来。此外,我们还讨论了HiPPO的离散化和相关性质等问题,这些内容奠定了后续的SSM工作的理论基础。

接下来,我们将介绍HiPPO的后续应用篇《Efficiently Modeling Long Sequences with Structured State Spaces》(简称S4),它利用HiPPO的推导结果作为序列建模的基本工具,并从新的视角探讨了高效的计算和训练方式,最后在不少长序列建模任务上验证了它的有效性,可谓SSM乃至RNN复兴的代表作之一。

基本框架

S4使用的序列建模框架,是如下的线性ODE系统:
\begin{equation}\begin{aligned}
x'(t) =&\, A x(t) + B u(t) \\
y(t) =&\, C^* x(t) + D u(t)
\end{aligned}\end{equation}

点击阅读全文...

8 Jul

“闭门造车”之多模态思路浅谈(二):自回归

这篇文章我们继续来闭门造车,分享一下笔者最近对多模态学习的一些新理解。

在前文《“闭门造车”之多模态思路浅谈(一):无损输入》中,我们强调了无损输入对于理想的多模型模态的重要性。如果这个观点成立,那么当前基于VQ-VAE、VQ-GAN等将图像离散化的主流思路就存在能力瓶颈,因为只需要简单计算一下信息熵就可以表明离散化必然会有严重的信息损失,所以更有前景或者说更长远的方案应该是输入连续型特征,比如直接将图像的原始像素特征Patchify后输入到模型中。

然而,连续型输入对于图像理解自然简单,但对图像生成来说则引入了额外的困难,因为非离散化无法直接套用文本的自回归框架,多少都要加入一些新内容如扩散,这就引出了本文的主题——如何进行多模态的自回归学习与生成。当然,非离散化只是表面的困难,更艰巨的部份还在后头...

无损含义

首先我们再来明确一下无损的含义。无损并不是指整个计算过程中一丁点损失都不能有,这不现实,也不符合我们所理解的深度学习的要义——在2015年的文章《闲聊:神经网络与深度学习》我们就提到过,深度学习成功的关键是信息损失。所以,这里无损的含义很简单,单纯是希望作为模型的输入来说尽可能无损。

点击阅读全文...

10 Apr

备忘:椭圆坐标与复三角函数

椭圆坐标系是一种二维正交坐标系。与直角坐标的转换关系为
$$\begin{aligned}x = a \cos h \mu \cos \nu \\ y = a \sin h \mu \sin \nu\end{aligned}$$

其中$(-a,0)$和$(a,0)$是两个焦点。

参看:http://zh.wikipedia.org/wiki/椭圆坐标系

Elliptical_coordinates_grid

Elliptical_coordinates_grid

点击阅读全文...

1 Mar

科学空间|Scientific Spaces 介绍

中山大学基础数学研究生,本科为华南师范大学。93年从奥尔特星云移民地球,因忘记回家路线,遂仰望星空,希望找到时空之路。同时兼爱各种科学,热衷钻牛角尖,因此经常碰壁,但偶然把牛角钻穿,也乐在其中。偏爱物理、天文、计算机,喜欢思考,虽擅长理性分析,但也容易感情用事,崇拜Feynman。爱好阅读,没事偷懒玩玩象棋,闲时爱好进入厨房做几道小菜,偶尔也开开数据“挖掘机”。明明要学基础数学,偏偏不务正业,沉溺神经网络,妄想人工智能,曾未在ACL、AAAI、COLING等会议上发表一篇文章。近期还挣扎在NLP大坑,在科学空间(https://kexue.fm)期待大家的拯救。

历史内容

华南师范大学数学系学生。93年从奥尔特星云移民地球,因忘记回家路线,遂仰望星空,希望找到时空之路。同时兼爱各种科学,热衷钻牛角尖,因此经常碰壁,但偶然把牛角钻穿,也乐在其中。偏爱物理、天文,喜欢思考,虽擅长理性分析,但也容易感情用事,崇拜费曼。长期阅读《天文爱好者》和《环球科学》,没事偷懒玩玩象棋,闲时爱好进入厨房做几道小菜,偶尔也当当电工。近期主要学习理论物理,在科学空间期待大家的指教。

名称:科学空间|Scientific Spaces
网址:http://kexue.fm

站长:苏剑林
信念:探索我们的世界,聆听我们的自然

网站历史

2009.03.01 网站初步建立,刚开始的时候使用的是BoBlog以及宇宙驿站的空间,内容定位:科学转载。

2009.03.28 开始进行大规模推广,访问量开始提高

2009.03-05 期间进行过多次改变,特别是Blog程序的转换,内容上的改革等

点击阅读全文...

18 Jul

日全食多路联合直播频道

正式直播活动计划于北京时间7月22日7时30分开始,11时30分结束,持续约4个小时。

(观看请安装PPlive插件,只能用IE或者IE内核浏览器观看)

 

简介:

点击阅读全文...