我的自主招生成绩公布了
By 苏剑林 | 2012-03-04 | 39133位读者 | 引用高考早已成为了历史,报考、录取等也已经成为了过去,由于高考发挥不大好,所以最终我进了华南师范大学的数学勷勤创新班,在石牌校区(华师本部)的数学科学院。
有人曾问我考得这样的成绩遗憾吗?我说的确会有些遗憾,毕竟当初很有大志地冲着更加名牌的大学;不过要是问我后不后悔这样过了高三,我会坚决地说绝不后悔,而且我会非常高兴我是这样过了。(备考、研究、玩闹......)不管怎样,我会好好把握在大学的日子,专心研究,细细品味。我不相信一个大学就可以决定我的人生,但我肯定我的大学将会是我人生中重要的一部分。
要问我未来的计划,我只能说没有什么计划。是呀,未来这么远,这么“混沌”,怎么可能预测的了呢?不过还是可以“定性”地估计一下大概方向的,以后就想做研究型的工作,虽然学习的是数学,但还是努力将其结合物理一起来学吧。所以以后可能从事物理或数学相关工作,当然,要是这些都实现不了的话,我还可以去当一个老师,毕竟,教育也是我挺有兴趣的领域(尤其是看了宝莱坞的《三个傻瓜》之后)。如果自己不是人才,就希望能够培养一些人才出来^_^。
又折腾网络了......
By 苏剑林 | 2012-09-25 | 24821位读者 | 引用今晚主要干了两件事情:
1、实现了在windows 8的情况下,把自己的笔记本当做wifi的信号发射点,共享校园网(即“笔记本 wifi 热点”那技术,不知道这样会不会折损电脑寿命呀)。主要方法如下:
1.1、安装.net 3.5,安装方法:
挂载windows 8的安装光盘,
然后右击开始菜单(Win + X)的左下角,选择-命令提示符(管理员),接着然后输入如下命令:
dism.exe /online /enable-feature /featurename:NetFX3 /Source:F:\sources\sxs
其中F是安装光盘的驱动器符号。接下来是漫长等待,估计会有十多分钟,就会提示安装进度100%了。
1.2、安装Connectify软件,直接到官网下载最新的精简版就行,有兴趣可以购买专业版。安装后需要重新启动,然后简单地配置一下就行了,不再细说。
附:
顺便提一下,我也试过国内的wifi共享精灵,但是发现它会卡在“查找当前配置信息”那里,这折腾了我几个小时,最终还是没有解决...所以还是用回外国软件了。
行星密度与其公转周期(更新)
By 苏剑林 | 2012-10-24 | 24181位读者 | 引用===我与《天文爱好者》不得不说的故事===
去年在订阅2012年的《天文爱好者》时,考虑到之后就要上大学了,所以只是订了半年,因此过了今年六月我就没有看新的《天文爱好者》了。暑假的两个月,还有九月、十月,将近四个月没有看它了,我本以为我已经适应了没有天爱的日子。
大概一个星期前,我在天爱的淘宝网重新买了最近四个月的《天文爱好者》,18日下午,我再见了它。那天晚上,我突然觉得很感动,有种感慨万千的感觉。虽然这么久没有看了,但是再看的感觉是如此的熟悉,如此的温馨。我原来觉得天文只是我的一个业余兴趣,如同生物化学那样,但在那瞬间我明白了我真的爱着天文,而且时间和空间的距离并不能减少我的爱!在那时,我决定了,我一定要从事天文相关专业——虽然我只是一个数学系学生!
==========行星周期下限==========
(2012.10.25:zwhzjh提出攝动力公式有错误,修正了攝动力的计算公式,之前写少了一个因子2,还有在最后的实际检验时,为了追求结果的合理性,忽略了方法的科学性,现在已经进行了修正,欢迎各位提更多意见。)
本文要探讨的东西是我在阅读《天文爱好者》的时候偶然发现的。在发现系外行星以前,人们通常都认为像木星这样的气态巨行星,公转周期都应该在十年以上。因此当瑞士天文学家米歇尔·迈耶和迪戴尔·邱洛兹发现第一颗系外行星时,他们简直无法确信自己的发现,因为这颗类木行星的公转周期只有短短的4.2天!但是经过确认,这的确是一颗系外行星,颠覆了过去的看法。我饶有兴致地研究下去,企图推导出某一密度行星的公转周期下限。
各位读者不妨先估计一下,它会与什么物理量有关?行星质量?母星质量?还是...?
很早以前我就对这个问题感兴趣了,但是一直搁置着,没有怎么研究。最近在阅读《引力与时空》的“潮汐力”那一节时重新回到了这个问题上,决定写点什么东西。在这里不深究流体静力平衡的定义,顾名思义地理解,它就是流体在某个特定的力场下所达到的平衡状态。流体静力学告诉我们:
达到流体静力平衡时,流体的面必定是一个等势面。
这是为什么呢?我们从数学的角度来简单分析一下:只考虑二维情况,假如等势面方程是$U(x,y)=C$,那么两边微分就有
$$0=dU=\frac{\partial U}{\partial x}dx+\frac{\partial U}{\partial y}dy=(\frac{\partial U}{\partial x},\frac{\partial U}{\partial y})\cdot (dx,dy)$$
这意味着向量$(\frac{\partial U}{\partial x},\frac{\partial U}{\partial y})$和向量$(dx,dy)$是垂直的,前者便是力的函数,后者就是一个切向量(三维就是一个切平面)。也就是说合外力必然和流体面垂直,这样才能提供一个相等的方向相反的内力让整个结构体系处于平衡状态!
正项级数敛散性最有力的判别法?
By 苏剑林 | 2013-05-17 | 94502位读者 | 引用在学习正项级数的时候,我们的数学分析教材提供了各种判别法,比如积分判别法、比较判别法,并由此衍生出了根植法、比值法等,在最后提供了一个比较精细的“Raabe判别法”。这些方法的精度(强度)各不相同,一般认为“Raabe判别法”的应用范围最广的。但是在我看来,基于p级数的比较判别法已经可以用于所有题目了,它才是最强的方法。
p级数就是我们熟悉的
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
通过积分判别法可以得到当p>1时该级数收敛,反之发散。虽然我不能证明,但是我觉得以下结论是成立的:
若正项级数$\sum_{n=1}^{\infty} a_n$收敛,则总可以找到一个常数A以及一个大于1的常数p,使每项都有$a_n < \frac{A}{n^p}$。
《虚拟的实在(1)》——为什么需要场?
By 苏剑林 | 2013-05-24 | 38973位读者 | 引用这段时间我接触的物理学都是场论,从各种方面为广义相对论奠基。自我感觉,我的数学基础还算可以的,但是物理“底蕴”就不够了,通常是能够把物理理论的数学描述看懂,但是对每一步的物理基础和来源却不甚了解,真是“数学有余而物理不足”呀。陶醉在场论的海洋一段时间之后,对场论也有了个大概的印象。但是有一个最基础的问题,直到今天我才算是得到了比较满意的解答——为什么要引入场?
在传统的牛顿力学中并没有“场”这一概念,比如天体力学我们只需要考虑天体之间的相互作用力就可以完美解决很多问题,根本不需要场。估计广大读者首次接触到“场”的概念是在高中学习电学的时候,那时教科书给我们带来了电场、场线等诸多诡异的概念。事实上就是如此,可以这样说,历史上“场”是为了电磁学而诞生的——法拉第首次引入的场线具有独特的魅力。
月底回家看彗星C/2012 S1 (ISON)
By 苏剑林 | 2013-11-01 | 23320位读者 | 引用今年的天象中的“重头戏”——C/2012 S1 (ISON)彗星将在月底闪亮登场!
先贴出来自scully.cfa.harvard.edu的数据:
Date TT R. A. (2000) Decl. Delta r Elong. Phase m1 m2
2013 11 24 14 45 42.7 -18 53 56 0.8693 0.3002 17.1 104.3 3.0
2013 11 25 15 01 27.3 -20 05 10 0.8819 0.2551 14.3 107.0 2.5
2013 11 26 15 18 04.6 -21 09 58 0.8998 0.2058 11.4 109.3 1.8
2013 11 27 15 35 58.3 -22 05 30 0.9244 0.1502 8.2 110.4 0.7
2013 11 28 15 56 28.2 -22 43 29 0.9594 0.0826 4.6 106.9 -1.3
2013 11 29 16 23 17.5 -19 52 57 0.9762 0.0322 1.8 107.7 -4.5
2013 11 30 16 21 22.4 -16 20 32 0.9125 0.1145 5.3 127.4 -0.2
2013 12 01 16 19 11.8 -13 59 07 0.8681 0.1757 8.1 128.1 1.2
2013 12 02 16 17 23.9 -11 56 02 0.8309 0.2281 10.6 127.3 2.0
2013 12 03 16 15 54.3 -10 00 54 0.7980 0.2754 13.0 126.1 2.5
最近评论