1 Feb

大学,如水年华

小时候总是听到“光阴似箭”,却总是觉得时间过得飞快,尤其是放假的时间迟迟不来。而现在,随着年龄的增长,我却发现,想要留住时间,如同抽刀断水一般,无济于事。尤其是美好的时刻,稍瞬即逝。大学,上学、军训的情况依然清晰在目,犹如发生在昨天,而现在已经是寒假了。有时我会怀疑是不是我的记忆力增强了,却发现没有这回事。原来,真相只有一个:光阴似箭!

我不喜欢仔细地规划自己的人生,因为未来太多未知了,也许你今天发现这方面很有趣,明天又会发现另一方面很有趣,所以我只知道我尽力做好当前喜欢做的事情就行。因此,在上大学之前,我也没有对大学想太多。想象中的大学是一个静静自修的教室加上一个丰富的图书馆而已。来到华师,确实有点意外,也有点遗憾,但是,仅此而已。虽然以前努力过要奔向更优秀的大学,但是这已经成为我宝贵的经验。以后在和朋友聊天时,我又多了一个话题。这不得不说是一件很美妙的事情!

点击阅读全文...

6 Feb

轻微的扰动——摄动法简介(2)

为了让大家更加熟悉摄动法的基本步骤,本文再讲一个用摄动法解代数方程的例子。这是从实际研究中出来的:
$$\begin{eqnarray*} x=\frac{k(1+k^2+k^4+l^2)}{2(1+k^2)^2} \\ k=\frac{dy}{dx}\end{eqnarray*} $$

这是一道微分方程。要求解这道方程,最好的方法当然是先从第一式解出$k=k(x)$的形式然后再积分。但是由于五次方程没有一般的显式解,所以迫使我们要考虑近似解。当然,一般来说熟悉mathematica的人都会直接数值计算了。我这里只考虑摄动法。

我们将原方程变为下面的形式:
$$x=\frac{k}{2}[1+\frac{l^2}{(1+k^2)^2}]$$

点击阅读全文...

21 Feb

[问题解答]有多少位数字?

解决完上一题《有多少个5?》后,子瑞表示看到一道类似的题目,当然,这道题比上一道难一些:

一个数,各个数字加起来等于900,乘以2后各个数字加起来还是等于900,已知这个数字只有3、4、5、6组成,请问满足条件的最大数与最小数的积有多少位数?

要解答这个问题,我们只需要知道最大数和最小数分别有多少位即可。因为最大数必然是6...3的形式,而最小数只能是3...6的形式,它们的位数之和就是所求的位数。

怎样比较两个数的大小呢?显然,在不同位数的数时,位数多的数要大,同样位数才从高到低逐位比较。因此,我们应当考虑位数的最大与最小。

点击阅读全文...

7 Mar

高斯型积分的微扰展开(二)

为什么第二篇姗姗来迟?

其实要写这系列之前,我已经构思好了接下来几篇的内容,本来想要自信地介绍自己想到的一些积分展开的技巧;而且摄动法我本身就比较熟悉,所以正常来说不会这么迟才有第二篇。然而,在我写完第一篇,准备写第二篇的期间,我看到了知乎上的这篇回复:
http://www.zhihu.com/question/24735673

这篇文章大大地拓展了我对级数的认识。里边谈及到了积分的展开是一个渐近级数。这让我犹豫了,怀疑这系列有没有价值,因为渐近级数意味着不管怎样的展开技巧,得到的级数收敛半径都是0。

后来再想想,就算是渐近级数,也有改进的空间,有加速收敛的方法,所以我想我这几篇文章,应该还有一点点意义吧,还可以顺便介绍一下渐近级数和奇点的相关理论。嗯,就这么办吧。

点击阅读全文...

7 Mar

轻微的扰动——摄动法简介(3)

微分方程领域大放光彩

虽然微分方程在各个计算领域都能一展才华,不过它最辉煌的光芒无疑绽放于微分方程领域,包括常微分方程和偏微分方程。海王星——“笔尖上发现的行星”——就是摄动法的著名成果,类似的还有冥王星的发现。天体力学家用一颗假设的行星的引力摄动来解释已知行星的异常运动,并由此反推未知行星的轨道。我们已不止一次提到过,一般的三体问题是混沌的,没有精确的解析解。这就要求我们考虑一些近似的方法,这样的方法发展起来就成为了摄动理论。

跟解代数方程一样,摄动法解带有小参数或者大参数的微分方程的基本思想,就是将微分方程的解表达为小参数或大参数的幂级数。当然,这是最直接的,也相当好理解,不过所求得的级数解有可能存在一些性态不好的情况,比如有时原解应该是一个周期运动,但是级数解却出现了诸如$t \sin t$的“长期项”,这是相当不利的,因此也发展出各种技巧来消除这些项。可见,摄动理论是一门应用广泛、集众家所大成的实用理论。下面我们将通过一些实际的例子来阐述这个技巧。

点击阅读全文...

13 Mar

单摆运动级数解:初试同伦分析

开始之初,我偶然在图书馆看到了一本名为《超越摄动:同伦分析方法导论》,里边介绍了一种求微分方程近似解的新方法,关键是里边的内容看起来并不是十分难懂,因此我饶有兴致地借来研究了。果然,这是一种非常有趣的方法,在某种意义上来说,还是非常简洁的方法。这解决了我一直以来想要研究的问题:用傅里叶级数来近似描述单摆运动的近似解。当然,它带给我的冲击不仅仅是这些。为了得出周期解,我又同时研究了各种摄动方法的技巧,如消除长期项的PL(Poincaré–Lindstedt)方法。这同时增加了我对各种近似解析方法的了解。从开学到现在快三周的时间,我一直都在研究这些问题。

点击阅读全文...

24 Mar

费曼积分法(5):欧拉数学的传承

在大学第二学期,我们的《数学分析》终于龟速地爬行到了定积分这一章节。对于一些比较复杂的定积分,我总想用自己的方法来解决它,这就重新燃起了我对“费曼积分法——积分符号内取微分”的热情。尤其是我用费曼积分法解决了几道比较有趣复杂的定积分问题时,成就感高涨,遂在此总结,与大家共勉。

这和欧拉数学有什么关系呢?之前已经提到过,欧拉数学是用一种不严谨却极具创造性的方式,给予我们对数学的介乎感性和理性的直观理解。我觉得费曼积分法也属于这个范畴内,它着眼于用一种特殊的视角解决问题,而暂时忽略掉数学严密性。在读费曼的故事中,我感觉到这种思想是贯穿他一生的研究之中的。

本文继续对费曼积分法的研究,得出一些不是很严谨的结论,为以后的应用奠下基础。

一、不成立的函数

首先我们重新考虑$\int_0^{\infty} \frac{\sin x}{x}dx$。这一次我们将它引入复数范畴内,考虑:
$$\int_0^{\infty}\frac{\cos x+i \sin x}{x}dx=\int_0^{\infty}\frac{e^{ix}}{x}dx$$

点击阅读全文...

27 Mar

费曼积分法(7):欧拉数学的综合

在本系列的第五篇文章中,BoJone导出了一些看似不合理的公式,而且并没有说明它的应用和来源。其实,这些都是我在研究以下积分的时候总结出来的:

$$\int_{-\infty}^{+\infty} \frac{\cos x}{a^2+x^2}dx$$

点击阅读全文...