你见过正方形轮子的自行车吗?一般认为,只有圆形的车轮才能使我们的车子平稳向前移动,但这只是针对平直道路而言的。谁规定路一定是平的?只要铺好一条适当的道路,正方形车轮的自行车照样可以平稳前行!本文就让我们为方轮自行车铺一条路。
其实,方轮自行车已经不是新鲜玩意了,它早已出现在不少科技馆中。从图片中可以看到,它的特殊轨道是有许多段弧组成的,每一段弧的长度等于正方形的边长。车轮前行时,正方形会保持与弧形相切(确保不会打滑)。这样的路的形状是什么曲线呢?很幸运,它并不十分复杂,而且让人意外的是,它就是我们之前已经研究过的“悬链线”!原来,要设计这样的一个曲线的轨道,不需要多么高深的设计师,只需要我们手拿一条铁链,让它自由垂下......
【翻译】庆祝希格斯玻色子的最终发现!
By 苏剑林 | 2012-07-18 | 28800位读者 | 引用复分析学习1:揭示微分与积分的联系
By 苏剑林 | 2012-08-02 | 34516位读者 | 引用笔者这段时间对复数尤其感兴趣,当然,严格来讲应该是复变函数内容,其中一个原因是通过它,我们可以把一些看似毫不相关的内容联系了起来,体现了数学的简洁美和统一美。我相当有兴趣的其中一个内容是实分析中的泰勒级数和傅里叶级数。这两者都是关于某个函数的级数展开式,其中泰勒级数是用于一般函数展开的,其各项系数通过求n阶导数得到;傅里叶级数的对象是周期函数,其各项系数是通过定积分求得的。在实数世界里,两者毫不相关,但是,复分析却告诉我们:它们只是同一个东西!只是将其在不同的角度“投影”到实数世界里,就产生了不同的“物像”,以至于我们认为它们是不同东西而已。
我们直接来看一个变魔术般的运算:
我们知道,在实数世界里头,我们有
$ln(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+...$,其中$|x| < 1$
设想两个带有等量异号电荷的点电荷,它们之间的距离足够小,这样的一个模型被称为电偶极子(electric dipole)。我们研究电偶极子,主要是研究它在力学方面的性质。很多东西都可以用电偶极子来近似描述,比如一个小磁体周围的磁场,还有地球本身也可以近似看做一个偶极子来描述它的磁力情况,以及一些双原子分子的模型也被可以看做一个电偶极子模型,等等。在电偶极子模型中,两电荷的距离足够小,以至于我们忽略了一些关于距离的高次方项,只保留了线性部分,但对于物理探索来说,它已经足够精确,更重要的是,它足够简单,以至于我们可以容易把它清晰地描述出来。
我们先来研究电偶极子产生的电势。设它们各自的电荷量为q和-q,两者距离为ε,根据库仑定律,一个点电荷产生的电势,正比于该电荷的电荷量,同时反比于到该点电荷的距离。那么,一个电偶极子产生的电势为
$U=C(\frac{q}{r}+\frac{-q}{|\vec{r}-\vec{\varepsilon}|})$————(1)
军训结束了,基本在华师安家了
By 苏剑林 | 2012-09-21 | 17247位读者 | 引用上网的那些事儿
从申请帐号到接通校园网络,昨天晚上我总共花了将近3个小时才实现了在校内上网......
其实这本来不是一件很复杂的事情,但对于我的笔记本就是挺麻烦的。首先是申请,向隔壁师兄咨询了网管所在后,几分钟就申请到了账号,然后回到宿舍配置电脑。按照说明,是需要安装一个锐捷客户端的,通过手机把笔记本连上网络后,花了差不多20M流量下载了这个客户端,然后发现它竟然不能在Windows 8 64bit上运行。这就头疼了,我的笔记本只有Windows8和ubuntu呀,总不能为了上网换回Windows 7吧?就这样在两个系统中来来回回弄了两个小时,期间尝试过用mentohust来替换它,但发现在Windows 8上还是很头疼地不行。最后只能通过兼容模式来解决:
右击“锐捷客户端”的安装程序——属性——兼容性——选择以Windows 7兼容模式
右击“锐捷客户端”的安装程序——以管理员身份运行——安装程序——重新启动
然后就可以启动锐捷客户端了。我们用的是4.31版本。
军训中的数学——握手奇数次的人数
By 苏剑林 | 2012-09-22 | 26126位读者 | 引用军训是比较辛苦,可是总有一些无聊的时刻。比如我们每次集合后的第一件事基本上都是站军姿,少则五分钟,长则二三十分钟,在这段时间里,头脑总得找点东西想才行,不然一动不动的,非常难熬。我就是在军训那些无聊的时刻里通过想数学问题来度过的。比如一有空余时间,我的头脑就浮现着级数$\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{p}$、哥德巴赫猜想、稳定性问题啦等等,并不是说要做出什么大发现,只是为了渡过无聊时间,也是对自己的思维能力和想象能力的锻炼吧。
之前提到过,昨天我们的“格斗方阵”去大学城表演了。在去大学城的过程中,我的一位“战友”问了我一个这样的问题:
在一个相互握手的人群中,握手奇数次的人总是有偶数个。每两个人可以握多于一次的手
他还说这是爱因斯坦提问的。这可把我的兴致给调动起来了。(后来我在网上搜索,却发现不了这个问题跟爱因斯坦的任何联系...)下边是我的颇有戏剧性的思考过程。
开始学习数学软件Scilab
By 苏剑林 | 2012-09-28 | 38785位读者 | 引用其实很早之前我就想学习一款数学软件的使用,以前很感兴趣的是mathematica,也玩弄过一阵子,但毕竟在高中没有多大需要,也就没有坚持下来。更重要的是,这些软件都是要收费的。上了大学后,听了师兄姐对数学建模的讲述,发现他们基本上也是用mathematica或者matlab的,但这两个软件都是要收费的,我不大想用破解版本。既然我都已经用上了ubuntu了,那么我就该好好利用它。据说命令跟matlab很相似的软件是scilab,还有octave,不同的是这些都是开源免费的。
出于熟悉代码操作和数学软件编程的目的,我选择了学习scilab。虽然网上说octave与matlab的相似程度更高,但是我感觉scilab比octave用的更广一些,所以就用它。所谓“一理通百理明”,先专心学好一个。
下面是我编写的第一个scialb程序,利用威尔逊方法来进行素性测试。这个代码的主要目的是练习条件语句和循环语句,以及一些输出输入的技巧而已。程序本身比较丑陋。
//我的第一个scilab程序
//完成于2012.09.27
label1=['p:';]; //定义标签
B=x_mdialog(['本程序使用威尔逊方法判断进行素数测试。';'请输入要判断的数'],label1,['127';]); //输入框
p=evstr(B(1)); //提取输入框里边的数字进行赋值
i=1;
j=1;
q=p-1;
while i<q
j=j*i;
j=modulo(j,p);//这个是模函数。
i=i+1;
end
if j==1
messagebox(['这是一个素数';],['测试结果']); //输出,其中后边的“测试结果”是输入框的标题
else
messagebox(['这是一个合数';],['测试结果']);
end
最近评论