22 Dec

将多项式分解为两个不可约多项式之和

在高等代数的多项式一章中,通常会有这样的一道练习题:

证明任意有理数域上的多项式都能够表示为两个有理数域上的不可约多项式之和。

这是道简单的练习题,证明方法有多种。首先来介绍一个巧妙的证法。

一个巧妙证明

有理数域上的多项式问题等价于整数域上的多项式问题,因此,只需要对整数域上的多项式进行证明(这步转换使得我们可以使用艾森斯坦判别法)。设$f(x)$是整数域上的一个$n$次多项式:
$$f(x)=a_n x^n+a_{n-1} x^{n-1}+\dots+a_1 x+a_0$$
我们只需要注意到
$$p f(x)=\left[p f(x)+x^n+p\right]-(x^{n}+p)$$

点击阅读全文...

14 Sep

《量子力学与路径积分》习题解答V0.1

忘了告诉大家,笔者是师范生,目前大四了,按照计划,我已经在一所高中实习了,因此,这两个月更新可能不怎么多,回复也不及时,请大家见谅。

趁这两个月时间,每天做一点《量子力学与路径积分》中的习题,整理与大家分享。目前是V0.1版,暂时只有第二三章的大部分习题解答。

《量子力学与路径积分》习题解答

《量子力学与路径积分》习题解答

点击阅读全文...

17 Oct

《量子力学与路径积分》习题解答V0.2

由于在实习中,事情比较多,做题时间比较少。并且越往后题目难度越大,因此习题解答的更新速度也慢了。现在是0.2版本,基本完成了前五章的习题,并且整理了版面,还加入了新版《量子力学与路径积分》的勘误。

如有问题,请指出,谢谢。

下载:《量子力学与路径积分》习题解答V0.2.pdf

18 Nov

《量子力学与路径积分》习题解答V0.3

新的《量子力学与路径积分》习题解答又放出来啦。与前两个版本不同的是,前两次更新,每次基本上完成了两章的习题,而这一次,只是增加了第6章的22道习题(第6章共有29道)。原因很多,各种忙就不说啦,主要是第6章开始,各种题目开始复杂起来,计算量也增大,虽然笔者是数学系的,可是还是前进得艰难。还有,第4、5两章加起来也只是25道习题,第6章却有29题,因此,本次更新的工作量,远远大于前两次更新的工作量。

为什么只有22题?当然是没有做完啦。为什么没有做完就更新啦?因为笔者觉得右面的题目,跟第7章的联系更为密切,因此,怕读者等不及,所以剩下的题目,跟第7章一起再发吧。

此外,我是看着中文版来做题的,中文版的翻译质量还不错,但是细微之处却有些不妥当,所以笔者要来回参考中英文版,颇累。读者可以发现,这一版中,“勘误”增加了不少。

点击阅读全文...

9 Jan

《量子力学与路径积分》习题解答V0.4

流年

流年

《量子力学与路径积分》的习题解答终于艰难地推进到了0.4版本,目前已经基本完成了前7章的习题。

今天已经是2016年1月9号了,2015年已经远去,都忘记跟大家说一声新年快乐了,实在抱歉。在这里补充一句:祝大家新年快乐,事事如意!

笔者已经大四了,现在是临近期末考,又临近毕业。最近忙的事情有很多,其中之一是我加入了一个互联网小公司的创业队伍中,负责文本挖掘,偶尔也写写爬虫,等等,感觉自己进去之后,增长了不少见识,也增加了不少技术知识,较之我上一次实习,又有不一样的高度。现在里边有好几样事情排队着做,可谓忙得不亦悦乎了。还有,我也开始写毕业论文了,早点写完能够多点时间,学学自己喜欢的东西,毕业论文我写的是路径积分相关的内容,自我感觉写得还是比较清楚易懂的,等时机成熟了,发出来,向大家普及路径积分^_^。此外,每天做点路径积分的习题,也要消耗不少时间,有些比较难的题目,基本一道就做几个早上才能写出比较满意的答案。总感觉想学的想做的事情有很多,可是时间很少。

点击阅读全文...

9 Apr

一个非线性差分方程的隐函数解

问题来源

笔者经常学习的数学研发论坛曾有一帖讨论下述非线性差分方程的渐近求解:
$$a_{n+1}=a_n+\frac{1}{a_n^2},\, a_1=1$$
原帖子在这里,从这帖子中我获益良多,学习到了很多新技巧。主要思路是通过将两边立方,然后设$x_n=a_n^3$,变为等价的递推问题:
$$x_{n+1}=x_n+3+\frac{3}{x_n}+\frac{1}{x_n^2},\,x_1=1$$
然后可以通过巧妙的技巧得到渐近展开式:
$$x_n = 3n+\ln n+a+\frac{\frac{1}{3}(\ln n+a)-\frac{5}{18}}{n}+\dots$$
具体过程就不提了,读者可以自行到上述帖子学习。

然而,这种形式的解虽然精妙,但存在一些笔者不是很满意的地方:

1、解是渐近的级数,这就意味着实际上收敛半径为0;
2、是$n^{-k}$形式的解,对于较小的$n$难以计算,这都使得高精度计算变得比较困难;
3、当然,题目本来的目的是渐近计算,但是渐近分析似乎又没有必要展开那么多项;
4、里边带有了一个本来就比较难计算的极限值$a$;
5、求解过程似乎稍欠直观。

当然,上面这些缺点,有些是鸡蛋里挑骨头的。不过,也正是这些缺点,促使我寻找更好的形式的解,最终导致了这篇文章。

点击阅读全文...

1 Apr

《量子力学与路径积分》习题解答V0.5

习题解答继续艰难推进中,目前是0.5版本,相比0.4版,跳过了8、9章,先做了第10、11章统计力学部分的习题。

第10章有10道习题,第11章其实没有习题。看上去很少,但其实每一道习题的难度都很大。这两章的主要内容都是在用路径积分方法算统计力学中的配分函数,这本来就是一个很艰辛的课题。加上费曼在书中那形象的描述,容易让读者能够认识到大概,但是却很难算下去。事实上,这一章的习题,我参考了相当多的资料,中文的、英文的都有,才勉强完成了。

虽说是完成,但10道题目中,我只完成了9道,其中问题10-3是有困惑的,我感觉的结果跟费曼给出的不一样,因此就算不下去了。在这里提出来,希望了解的读者赐教。

点击阅读全文...

14 Oct

【理解黎曼几何】1. 一条几何之路

一个月没更新了,这个月花了不少时间在黎曼几何的理解方面,有一些体会,与大家分享。记得当初孟岩写的《理解矩阵》,和笔者所写的《新理解矩阵》,读者反响都挺不错的,这次沿用了这个名称,称之为《理解黎曼几何》。

生活在二维空间的蚂蚁

生活在二维空间的蚂蚁

黎曼几何是研究内蕴几何的几何分支。通俗来讲,就是我们可能生活在弯曲的空间中,比如一只生活在二维球面的蚂蚁,作为生活在弯曲空间中的个体,我们并没有足够多的智慧去把我们的弯曲嵌入到更高维的空间中去研究,就好比蚂蚁只懂得在球面上爬,不能从“三维空间的曲面”这一观点来认识球面,因为球面就是它们的世界。因此,我们就有了内蕴几何,它告诉我们,即便是身处弯曲空间中,我们依旧能够测量长度、面积、体积等,我们依旧能够算微分、积分,甚至我们能够发现我们的空间是弯曲的!也就是说,身处球面的蚂蚁,只要有足够的智慧,它们就能发现曲面是弯曲的——跟哥伦布环球航行那样——它们朝着一个方向走,最终却回到了起点,这就可以断定它们自身所处的空间必然是弯曲的——这个发现不需要用到三维空间的知识。

点击阅读全文...