分享:孟岩的《理解矩阵》一文
By 苏剑林 | 2012-10-22 | 57670位读者 | 引用之前已经提到我要自学相对论和量子力学。作为现代物理的两大支柱,所用的数学也是很“现代”的,不能总是用高中那套简单的模式来计算,所以线性代数是我要熟悉的一门课程之一。现在大一还没开设线性代数课程,但是我所持的观点是:“任何东西只要你需要它,你就应该去学,而且能够学会。”其实我初三暑假的时候就开始接触了线性代数,我看的那本教材,跟国内其他线性代数教材一样,采用了一种只要求记忆和计算的方式来教授,先讲从线性方程组引出行列式,再到矩阵。我那时也在背诵,知道了了行列式怎么算的,行列式可以用来解方程组,矩阵是怎么相乘的等等。但我完全不知道为什么,我甚至不懂为什么这门课程叫“线性代数”。(当然,也有可能是那时的数学水平不够)国外很多教程都讲的很好,很规范地教,但是对于国内像我这样平庸的学生又显得过于专业。我一直期待有这样的一个平衡点,可惜一直没有找到,所以只能从各种渠道摸索。
《新理解矩阵1》:矩阵是什么?
By 苏剑林 | 2012-10-29 | 74538位读者 | 引用前边我承诺过会写一些关于自己对矩阵的理解。其实孟岩在《理解矩阵》这三篇文章中,已经用一种很直观的方法告诉了我们有关矩阵以及线性代数的一些性质和思想。而我对矩阵的理解,大多数也是来源于他的文章。当然,为了更好地理解线性代数,我还阅读了很多相关书籍,以求得到一种符合直觉的理解方式。孟岩的blog已经很久没有更新了,在此谨引用他的标题,来叙述我对矩阵的理解。
当然,我不打算追求那些空间、算子那些高抽象性的问题,我只是想发表一下自己对线性代数中一些常用工具的看法,比如说矩阵、行列式等。同时,文章命名为“理解矩阵”,也就是说这不是矩阵入门教程,而是与已经有一定的线性代数基础的读者一起探讨关于矩阵的其他理解方式,仅此而已。我估计基本上学过线性代数的读者都能够读懂这篇文章。
首先,我们不禁要追溯一个本源问题:矩阵是什么?
《新理解矩阵2》:矩阵是什么?
By 苏剑林 | 2012-10-31 | 37036位读者 | 引用上一篇文章中我从纯代数运算的角度来讲述了我对矩阵的一个理解,可以看到,我们赋予了矩阵相应的运算法则,它就在代数、分析等领域显示出了巨大作用。但是纯粹的代数是不足够的,要想更加完美,最好是找到相应的几何对象能够与之对应,只有这样,我们才能够直观地理解它,以达到得心应手的效果。
几何理解
我假设读者已经看过孟岩的《理解矩阵》三篇文章,所以更多的细节我就不重复了。我们知道,矩阵A
$$\begin{pmatrix}a_{11} & a_{12} \\ a_{21} & a_{22}\end{pmatrix}$$
事实上由两个向量$[a_{11},a_{21}]^T$和$[a_{12},a_{22}]^T$(这里的向量都是列向量)组成,它描述了一个平面(仿射)坐标系。换句话说,这两个向量其实是这个坐标系的两个基,而运算$y=Ax$则是告诉我们,在$A$这个坐标系下的x向量,在$I$坐标系下是怎样的。这里的$I$坐标系就是我们最常用的直角坐标系,也就是说,任何向量(包括矩阵里边的向量),只要它前面没有矩阵作用于它,那么它都是在直角坐标系下度量出来的。
《新理解矩阵3》:行列式的点滴
By 苏剑林 | 2012-11-04 | 40847位读者 | 引用本文的最新版本位于:http://kexue.fm/archives/2208/
亲爱的读者朋友们,科学空间版的理解矩阵已经来到了BoJone认为是最激动人心的部分了,那就是关于行列式的叙述。这部分内容没有在孟岩的文章中被谈及到,是我自己结合了一些书籍和网络资源而得出的一些看法。其中最主要的书籍是《数学桥》,而追本溯源,促进我研究这方面的内容的是matrix67的那篇《教材应该怎么写》。本文包含了相当多的直观理解内容,在我看来,这部分内容也许不是正统的观点,但是至少在某种程度上能够促进我们对线性代数的理解。
大多数线性代数引入行列式的方式都是通过讲解线性方程组的,这种方式能够让学生很快地掌握它的计算,以及给出了一个最实际的应用(就是解方程组啦)。但是这很容易让读者走进一个误区,让他们认为线性代数就是研究解方程组的。这样并不能让读者真正理解到它的本质,而只有当我们对它有了一个直观熟练的感觉,我们才能很好地运用它。
行列式的出现其实是为了判断一个矩阵是否可逆的,它通过某些方式构造出一个“相对简单”的函数来达到这个目的,这个函数就是矩阵的行列式。让我们来反思一下,矩阵可逆意味着什么呢?之前已经提到过,矩阵是从一个点到另外一个点的变换,那么逆矩阵很显然就是为了把它变换回来。我们还说过,“运动是相对的”,点的变换又可以用坐标系的变换来实现。但是,按照我们的直觉,不同的坐标系除了有那些运算上的复杂度不同(比如一般的仿射坐标系计算点积比直角坐标系复杂)之外,不应该有其他的不同了,用物理的语言说,就是一切坐标系都是平权的。那么给出一个坐标系,可以自然地变换到另外一个坐标系,也可以自然地将它变换回来。既然矩阵是这种坐标系的一个描述,那么矩阵不可逆的唯一可能性就是:
这个$n$阶矩阵的$n$个列向量根本就构不成一个$n$维空间的坐标系。
《新理解矩阵4》:相似矩阵的那些事儿
By 苏剑林 | 2012-11-11 | 54143位读者 | 引用这篇文章估计是这个系列最后一篇了,也许以后会继续谈到线性代数,但是将会独立开来讲述。本文主要讲的是相似矩阵的一些事情,本文的观点很是粗糙,自己感觉都有点模糊,因此请读者细细阅读。在孟岩的文章里头,它对矩阵及其相似有了一个非常精彩的描述:
“矩阵是线性空间中的线性变换的一个描述。在一个线性空间中,只要我们选定一组基,那么对于任何一个线性变换,都能够用一个确定的矩阵来加以描述。”
同样的,对于一个线性变换,只要你选定一组基,那么就可以找到一个矩阵来描述这个线性变换。换一组基,就得到一个不同的矩阵。所有这些矩阵都是这同一个线性变换的描述,但又都不是线性变换本身。
我从来不想在教科书上的定义上纠结太多,因为我知道,真正对定义的理解,需要在长期的实践应用中慢慢感悟的,所以我们唯一需要做的是继续我们的研究。
但是前些天有些朋友问到我关于微分的理解,比如“dx是不是一定很小”等等,所以决定在此写写我的理解。
与微分联系很紧密的,也是我们很熟悉的东西,当然是“增量 ”啦,比如$\Delta y$、$\Delta x$等等,增量显然是可以任意大的(只要自变量还在定义域内)。那么考虑一个函数$y=f(x)$,函数的微分是怎么出现的呢?那是因为我们直接研究函数的增量是比较麻烦的,所以就引入了微分dy,当$\Delta x$很小时,它代表增量的主项:$\Delta y=dy+o(\Delta x)=A \Delta x+o(\Delta x)$,A是一个常数。
网友:椭圆定长弦中点轨迹的一种解法
By 苏剑林 | 2013-02-02 | 33761位读者 | 引用大概在半年前,我曾用“化圆法”解决了椭圆内定长弦中点轨迹问题,求出了轨迹方程。前几天,我收到了网名为“理想”的网友的Email,他提出了自己对这个问题的解法,并得到了形式不同的轨迹方程,因此对两者的等价性表示疑惑。经过检验,我跟他的轨迹方程基本上是等价的,不过,他求出的轨迹方程总包括了原点,这是一点不足之处。但是看起来,他的轨迹方程却感觉好看一些。这的确很让人意外,因为从他的化简过程来看,有种“化简为繁”的味道,却得出了相当简洁的答案,着实有趣。
经过网友的同意,将他的过程贴在这里与大家分享!后面附有pdf文档,欢迎下载阅读。希望在科学空间可以看到更多的读者留下的痕迹。
椭圆定长弦中点轨迹的一种解法
作者:理想
本文介绍了一种计算椭圆定长弦中点轨迹的方法。设椭圆长、短轴分别为$2a$、$2b$,弦长为$2r$,随着弦的两端在椭圆上滑动,弦的中点形成的轨迹为:
$$(\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1)(\frac{x^2}{a^4} + \frac{y^2}{b^4} + \frac{r^2}{a^2b^2}) + \frac{r^2}{a^2b^2} = 0$$
它不是一个椭圆,而是一个高次曲线。
最近评论