30 Oct

低秩近似之路(四):ID

这篇文章的主角是ID(Interpolative Decomposition),中文可以称之为“插值分解”,它同样可以理解为是一种具有特定结构的低秩分解,其中的一侧是该矩阵的若干列(当然如果你偏好于行,那么选择行也没什么问题),换句话说,ID试图从一个矩阵中找出若干关键列作为“骨架”(通常也称作“草图”)来逼近原始矩阵。

可能很多读者都未曾听说过ID,即便维基百科也只有几句语焉不详的介绍(链接),但事实上,ID跟SVD一样早已内置在SciPy之中(参考scipy.linalg.interpolative),这侧面印证了ID的实用价值。

基本定义

前三篇文章我们分别介绍了伪逆SVDCR近似,它们都可以视为寻找特定结构的低秩近似:
\begin{equation}\mathop{\text{argmin}}_{\text{rank}(\tilde{\boldsymbol{M}})\leq r}\Vert \tilde{\boldsymbol{M}} - \boldsymbol{M}\Vert_F^2\end{equation}

点击阅读全文...

24 Oct

VQ的旋转技巧:梯度直通估计的一般推广

随着多模态LLM的方兴未艾,VQ(Vector Quantization)的地位也“水涨船高”,它可以作为视觉乃至任意模态的Tokenizer,将多模态数据统一到自回归生成框架中。遗憾的是,自VQ-VAE首次提出VQ以来,其理论并没有显著进步,像编码表的坍缩或利用率低等问题至今仍亟待解决,取而代之的是FSQ等替代方案被提出,成为了VQ有力的“竞争对手”。

然而,FSQ并不能在任何场景下都替代VQ,所以VQ本身的改进依然是有价值的。近日笔者读到了《Restructuring Vector Quantization with the Rotation Trick》,它提出了一种旋转技巧,声称能改善VQ的一系列问题,本文就让我们一起来品鉴一下。

回顾

早在五年前的博文《VQ-VAE的简明介绍:量子化自编码器》中我们就介绍过了VQ-VAE,后来在《简单得令人尴尬的FSQ:“四舍五入”超越了VQ-VAE》介绍FSQ的时候,也再次仔细地温习了VQ-VAE,还不了解的读者可以先阅读这两篇文章。

点击阅读全文...

29 Nov

从Hessian近似看自适应学习率优化器

这几天在重温去年的Meta的一篇论文《A Theory on Adam Instability in Large-Scale Machine Learning》,里边给出了看待Adam等自适应学习率优化器的新视角:它指出梯度平方的滑动平均某种程度上近似于在估计Hessian矩阵的平方,从而Adam、RMSprop等优化器实际上近似于二阶的Newton法。

这个角度颇为新颖,而且表面上跟以往的一些Hessian近似有明显的差异,因此值得我们去学习和思考一番。

牛顿下降

设损失函数为$\mathcal{L}(\boldsymbol{\theta})$,其中待优化参数为$\boldsymbol{\theta}$,我们的优化目标是
\begin{equation}\boldsymbol{\theta}^* = \mathop{\text{argmin}}_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta})\label{eq:loss}\end{equation}
假设$\boldsymbol{\theta}$的当前值是$\boldsymbol{\theta}_t$,Newton法通过将损失函数展开到二阶来寻求$\boldsymbol{\theta}_{t+1}$:
\begin{equation}\mathcal{L}(\boldsymbol{\theta})\approx \mathcal{L}(\boldsymbol{\theta}_t) + \boldsymbol{g}_t^{\top}(\boldsymbol{\theta} - \boldsymbol{\theta}_t) + \frac{1}{2}(\boldsymbol{\theta} - \boldsymbol{\theta}_t)^{\top}\boldsymbol{\mathcal{H}}_t(\boldsymbol{\theta} - \boldsymbol{\theta}_t)\end{equation}

点击阅读全文...

18 Nov

Adam的epsilon如何影响学习率的Scaling Law?

上一篇文章《当Batch Size增大时,学习率该如何随之变化?》我们从多个角度讨论了学习率与Batch Size之间的缩放规律,其中对于Adam优化器我们采用了SignSGD近似,这是分析Adam优化器常用的手段。那么一个很自然的问题就是:用SignSGD来近似Adam究竟有多科学呢?

我们知道,Adam优化器的更新量分母会带有一个$\epsilon$,初衷是预防除零错误,所以其值通常很接近于零,以至于我们做理论分析的时候通常选择忽略掉它。然而,当前LLM的训练尤其是低精度训练,我们往往会选择偏大的$\epsilon$,这导致在训练的中、后期$\epsilon$往往已经超过梯度平方大小,所以$\epsilon$的存在事实上已经不可忽略。

因此,这篇文章我们试图探索$\epsilon$如何影响Adam的学习率与Batch Size的Scaling Law,为相关问题提供一个参考的计算方案。

点击阅读全文...

10 Dec

Muon优化器赏析:从向量到矩阵的本质跨越

随着LLM时代的到来,学术界对于优化器的研究热情似乎有所减退。这主要是因为目前主流的AdamW已经能够满足大多数需求,而如果对优化器“大动干戈”,那么需要巨大的验证成本。因此,当前优化器的变化,多数都只是工业界根据自己的训练经验来对AdamW打的一些小补丁。

不过,最近推特上一个名为“Muon”的优化器颇为热闹,它声称比AdamW更为高效,且并不只是在Adam基础上的“小打小闹”,而是体现了关于向量与矩阵差异的一些值得深思的原理。本文让我们一起赏析一番。

Muon与AdamW效果对比(来源:推特@Yuchenj_UW)

Muon与AdamW效果对比(来源:推特@Yuchenj_UW)

点击阅读全文...

25 Dec

从谱范数梯度到新式权重衰减的思考

在文章《Muon优化器赏析:从向量到矩阵的本质跨越》中,我们介绍了一个名为“Muon”的新优化器,其中一个理解视角是作为谱范数正则下的最速梯度下降,这似乎揭示了矩阵参数的更本质的优化方向。众所周知,对于矩阵参数我们经常也会加权重衰减(Weight Decay),它可以理解为$F$范数平方的梯度,那么从Muon的视角看,通过谱范数平方的梯度来构建新的权重衰减,会不会能起到更好的效果呢?

那么问题来了,谱范数的梯度或者说导数长啥样呢?用它来设计的新权重衰减又是什么样的?接下来我们围绕这些问题展开。

基础回顾

谱范数(Spectral Norm),又称“$2$范数”,是最常用的矩阵范数之一,相比更简单的$F$范数(Frobenius Norm),它往往能揭示一些与矩阵乘法相关的更本质的信号,这是因为它定义上就跟矩阵乘法相关:对于矩阵参数$\boldsymbol{W}\in\mathbb{R}^{n\times m}$,它的谱范数定义为

点击阅读全文...