能量视角下的GAN模型(一):GAN=“挖坑”+“跳坑”
By 苏剑林 | 2019-01-30 | 93152位读者 | 引用在这个系列中,我们尝试从能量的视角理解GAN。我们会发现这个视角如此美妙和直观,甚至让人拍案叫绝。
本视角直接受启发于Benjio团队的新作《Maximum Entropy Generators for Energy-Based Models》,这篇文章前几天出现在arxiv上。当然,能量模型与GAN的联系由来已久,并不是这篇文章的独创,只不过这篇文章做得仔细和完善一些。另外本文还补充了自己的一些理解和思考上去,力求更为易懂和完整。
作为第一篇文章,我们先来给出一个直白的类比推导:GAN实际上就是一场前仆后继(前挖后跳?)的“挖坑”与“跳坑”之旅~
总的来说,本文的大致内容如下:
1、给出了GAN/WGAN的清晰直观的能量图像;
2、讨论了判别器(能量函数)的训练情况和策略;
3、指出了梯度惩罚一个非常漂亮而直观的能量解释;
4、讨论了GAN中优化器的选择问题。
“让Keras更酷一些!”:随意的输出和灵活的归一化
By 苏剑林 | 2019-01-27 | 100757位读者 | 引用继续“让Keras更酷一些!”系列,让Keras来得更有趣些吧~
这次围绕着Keras的loss、metric、权重和进度条进行展开。
可以不要输出
一般我们用Keras定义一个模型,是这样子的:
x_in = Input(shape=(784,))
x = x_in
x = Dense(100, activation='relu')(x)
x = Dense(10, activation='softmax')(x)
model = Model(x_in, x)
model.compile(loss='categorical_crossentropy ',
optimizer='adam',
metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5)
从Wasserstein距离、对偶理论到WGAN
By 苏剑林 | 2019-01-20 | 206706位读者 | 引用2017年的时候笔者曾写过博文《互怼的艺术:从零直达WGAN-GP》,从一个相对通俗的角度来介绍了WGAN,在那篇文章中,WGAN更像是一个天马行空的结果,而实际上跟Wasserstein距离没有多大关系。
在本篇文章中,我们再从更数学化的视角来讨论一下WGAN。当然,本文并不是纯粹地讨论GAN,而主要侧重于Wasserstein距离及其对偶理论的理解。本文受启发于著名的国外博文《Wasserstein GAN and the Kantorovich-Rubinstein Duality》,内容跟它大体上相同,但是删除了一些冗余的部分,对不够充分或者含糊不清的地方作了补充。不管怎样,在此先对前辈及前辈的文章表示致敬。
(注:完整理解本文,应该需要多元微积分、概率论以及线性代数等基础知识。还有,本文确实长,数学公式确实多,但是,真的不复杂、不难懂,大家不要看到公式就吓怕了~)
O-GAN:简单修改,让GAN的判别器变成一个编码器!
By 苏剑林 | 2019-03-06 | 242846位读者 | 引用本文来给大家分享一下笔者最近的一个工作:通过简单地修改原来的GAN模型,就可以让判别器变成一个编码器,从而让GAN同时具备生成能力和编码能力,并且几乎不会增加训练成本。这个新模型被称为O-GAN(正交GAN,即Orthogonal Generative Adversarial Network),因为它是基于对判别器的正交分解操作来完成的,是对判别器自由度的最充分利用。
构造一个显式的、总是可逆的矩阵
By 苏剑林 | 2019-03-01 | 41840位读者 | 引用从《恒等式 det(exp(A)) = exp(Tr(A)) 赏析》一文我们得到矩阵$\exp(\boldsymbol{A})$总是可逆的,它的逆就是$\exp(-\boldsymbol{A})$。问题是$\exp(\boldsymbol{A})$只是一个理论定义,单纯这样写没有什么价值,因为它要把每个$\boldsymbol{A}^n$都算出来。
有没有什么具体的例子呢?有,本文来构造一个显式的、总是可逆的矩阵。
其实思路非常简单,假设$\boldsymbol{x},\boldsymbol{y}$是两个$k$维列向量,那么$\boldsymbol{x}\boldsymbol{y}^{\top}$就是一个$k\times k$的矩阵,我们就来考虑
\begin{equation}\begin{aligned}\exp\left(\boldsymbol{x}\boldsymbol{y}^{\top}\right)=&\sum_{n=0}^{\infty}\frac{\left(\boldsymbol{x}\boldsymbol{y}^{\top}\right)^n}{n!}\\
=&\boldsymbol{I}+\boldsymbol{x}\boldsymbol{y}^{\top}+\frac{\boldsymbol{x}\boldsymbol{y}^{\top}\boldsymbol{x}\boldsymbol{y}^{\top}}{2}+\frac{\boldsymbol{x}\boldsymbol{y}^{\top}\boldsymbol{x}\boldsymbol{y}^{\top}\boldsymbol{x}\boldsymbol{y}^{\top}}{6}+\dots\end{aligned}\end{equation}
“让Keras更酷一些!”:分层的学习率和自由的梯度
By 苏剑林 | 2019-03-10 | 98406位读者 | 引用高举“让Keras更酷一些!”大旗,让Keras无限可能~
今天我们会用Keras做到两件很重要的事情:分层设置学习率和灵活操作梯度。
首先是分层设置学习率,这个用途很明显,比如我们在fine tune已有模型的时候,有些时候我们会固定一些层,但有时候我们又不想固定它,而是想要它以比其他层更低的学习率去更新,这个需求就是分层设置学习率了。对于在Keras中分层设置学习率,网上也有一定的探讨,结论都是要通过重写优化器来实现。显然这种方法不论在实现上还是使用上都不友好。
然后是操作梯度。操作梯度一个最直接的例子是梯度裁剪,也就是把梯度控制在某个范围内,Keras内置了这个方法。但是Keras内置的是全局的梯度裁剪,假如我要给每个梯度设置不同的裁剪方式呢?甚至我有其他的操作梯度的思路,那要怎么实施呢?不会又是重写优化器吧?
本文就来为上述问题给出尽可能简单的解决方案。
恒等式 det(exp(A)) = exp(Tr(A)) 赏析
By 苏剑林 | 2019-02-18 | 64451位读者 | 引用本文的主题是一个有趣的矩阵行列式的恒等式
\begin{equation}\det(\exp(\boldsymbol{A})) = \exp(\text{Tr}(\boldsymbol{A}))\label{eq:main}\end{equation}
这个恒等式在挺多数学和物理的计算中都出现过,笔者都在不同的文献中看到过好几次了。
注意左端是矩阵的指数,然后求行列式,这两步都是计算量非常大的运算;右端仅仅是矩阵的迹(一个标量),然后再做标量的指数。两边的计算量差了不知道多少倍,然而它们居然是相等的!这不得不说是一个神奇的事实。
所以,本文就来好好欣赏一个这个恒等式。
巧断梯度:单个loss实现GAN模型
By 苏剑林 | 2019-02-22 | 44664位读者 | 引用我们知道普通的模型都是搭好架构,然后定义好loss,直接扔给优化器训练就行了。但是GAN不一样,一般来说它涉及有两个不同的loss,这两个loss需要交替优化。现在主流的方案是判别器和生成器都按照1:1的次数交替训练(各训练一次,必要时可以给两者设置不同的学习率,即TTUR),交替优化就意味我们需要传入两次数据(从内存传到显存)、执行两次前向传播和反向传播。
如果我们能把这两步合并起来,作为一步去优化,那么肯定能节省时间的,这也就是GAN的同步训练。
(注:本文不是介绍新的GAN,而是介绍GAN的新写法,这只是一道编程题,不是一道算法题~)
最近评论