《自然极值》系列——5.最速降线的故事
By 苏剑林 | 2010-12-09 | 68923位读者 | 引用如果说前面关于这个系列的内容还不能使得读者您感到痛快,那么接下来要讲述的最速降线和悬链线问题也许能够满足你的需要。不过在进入对最速降线问题的理论探讨之前,我们先来讲述一个发生在17世纪的激动人心的数学竞赛的故事。我相信,每一个热爱数学和物理的朋友,都将会为其所振奋,为其所感动。里边渗透的,不仅仅是一次学术的竞争,更是一代又一代的人对真理的追求与探路的不懈精神。
(以下内容来源于网络,科学空间整理)
意大利科学家伽利略在1630年提出一个分析学的基本问题── “一个质点在重力作用下,从一个给定点A到不在它垂直下方的另一点B,如果不计摩擦力,问沿着什么曲线滑下所需时间最短。”这算是这个著名问题的起源了(为什么别人没有想起这个问题呢?所以说大科学家的素质就是思考、创新,要有思想,人没有思想,就和行尸走肉没有什么区别)。可惜的是伽利略说这曲线是圆,但这却是一个错误的答案。
今天上体育课的时候,BoJone与同学们正兴致勃勃地打着篮球,不料临近下课之时,同学猛一击(当然只是无意摩擦,没有恶意),我感到一阵猛疼——眼角处的肉破裂了!开始的一分钟内不停流血,奇怪的是到了校医室之后血就止住了(还没有经过任何处理,只是一直按住)。本以为只是小伤,简单处理就好,谁知校医说需要到外边的医院缝针,否则可能留疤毁容!!
既然如此严重,无奈只能服从了,简单处理伤口后就和母亲一起到了医院,缝了两针。由于接下来两天都得去医院消毒清洗伤口,所以干脆就请假回家了,周一再上学吧(貌似我在学校也仅仅是自学,没有多大区别^_^)...不过从受伤到现在,我还没有机会看到我的伤口究竟咋样...
《自然极值》系列——6.最速降线的解答
By 苏剑林 | 2010-12-10 | 61475位读者 | 引用通过上一小节的小故事,我们已经能够基本了解最速降线的内容了,它就是要我们求出满足某一极值条件的一个未知函数,由于函数是未知的,因此这类问题被称为“泛分析”。其中还谈到,伯努利利用费马原理巧妙地得出了答案,那么我们现在就再次回顾历史,追寻伯努利的答案,并且寻找进一步的应用。
为了计算方便,我们把最速降线倒过来,把初始点设置在原点。在下落过程中,重力势能转化为动能,因此,在点(x,y)处有$\frac{1}{2} mv^2=mgy\Rightarrow v=\sqrt{2gy}$,由于纯粹为了探讨曲线形状,所以我们使g=0.5,即$v=\sqrt{y}$。在点(x,y)处所走的路程为$ds=\sqrt{dy^2+dx^2}=\sqrt{\dot{y}^2+1}dx$,所以时间为$dt=\frac{ds}{v}=\frac{\sqrt{\dot{y}^2+1}dx}{\sqrt{y}}$,于是最速降线问题就是求使$t=\int_0^{x_2} \frac{\sqrt{\dot{y}^2+1}dx}{\sqrt{y}}$最小的函数。
N体问题的30个周期性解
By 苏剑林 | 2010-12-19 | 55917位读者 | 引用《自然极值》系列——7.悬链线问题
By 苏剑林 | 2010-12-26 | 71778位读者 | 引用约翰与他同时代的110位学者有通信联系,进行学术讨论的信件约有2500封,其中许多已成为珍贵的科学史文献,例如同他的哥哥雅各布以及莱布尼茨、惠更斯等人关于悬链线、最速降线(即旋轮线)和等周问题的通信讨论,虽然相互争论不断,特别是约翰和雅各布互相指责过于尖刻,使兄弟之间时常造成不快,但争论无疑会促进科学的发展,最速降线问题就导致了变分法的诞生。
有意思的是,1690年约翰·伯努利的哥哥雅可比·伯努利曾提出过悬链线问题向数学界征求答案。即:
固定项链的两端,在重力场中让它自然垂下,求项链的曲线方程.
吊桥上方的悬垂钢索,挂着水珠的蜘蛛网,电杆间的电线都是悬链线。伽利略最早注意到悬链线,猜测悬链线是抛物线。1691年莱布尼兹、惠更斯以及约翰·伯努利各自得到正确答案,所用方法是诞生不久的微积分。
《自然极值》系列——8.极值分析
By 苏剑林 | 2010-12-26 | 45580位读者 | 引用本篇文章是《自然极值》系列最后一篇文章,估计也是2010年最后一篇文章了。在这个美好的2010年,想必大家一定收获匪浅,BoJone也在2010年成长了很多。在2010年的尾声,BoJone和科学空间都祝大家在新的一年里更加开心快乐,在科学的道路上更快速地前行。
在本文,BoJone将与大家讨论求极值的最基本原理。这一探讨思路受到了天才的费恩曼所著《费恩曼物理讲义》的启迪。我们分别对函数求极值(求导)和泛函数极值(变分)进行一些简略的分析。
一、函数求极值
对于一个函数$y=f(x)$,设想它在$x=x_0$处取到最大值,那么显然对于很小的增量$\Delta x$,有
$$f(x_0+\Delta x) \leq f(x_0)\tag{3}$$根据泰勒级数,我们有
$f(x_0+\Delta x)=f(x_0)+f'(x_0)\Delta x$————(4)
最近评论