【分享】千万级百度知道语料
By 苏剑林 | 2018-01-30 | 80772位读者 | 引用发布
2018年01月30日
数目
共1千万条
格式
[
{
"url": "http://zhidao.baidu.com/question/565618371557484884.html",
"question": "学文员有哪些专科学校",
"tags": [
"学校",
"专科",
"院校信息"
]
},
{
"url": "http://zhidao.baidu.com/question/2079794100345438428.html",
"question": "网赌和澳门赌有区别吗",
"tags": [
"网络",
"澳门",
"赌博"
]
}
]
三味Capsule:矩阵Capsule与EM路由
By 苏剑林 | 2018-03-02 | 212704位读者 | 引用事实上,在论文《Dynamic Routing Between Capsules》发布不久后,一篇新的Capsule论文《Matrix Capsules with EM Routing》就已经匿名公开了(在ICLR 2018的匿名评审中),而如今作者已经公开,他们是Geoffrey Hinton, Sara Sabour, Nicholas Frosst。不出大家意料,作者果然有Hinton。
大家都知道,像Hinton这些“鼻祖级”的人物,发表出来的结果一般都是比较“重磅”的。那么,这篇新论文有什么特色呢?
在笔者的思考过程中,文章《Understanding Matrix capsules with EM Routing 》给了我颇多启示,知乎上各位大神的相关讨论也加速了我的阅读,在此表示感谢。
论文摘要
让我们先来回忆一下上一篇介绍《再来一顿贺岁宴:从K-Means到Capsule》中的那个图
这个图表明,Capsule事实上描述了一个建模的框架,这个框架中的东西很多都是可以自定义的,最明显的是聚类算法,可以说“有多少种聚类算法就有多少种动态路由”。那么这次Hinton修改了什么呢?总的来说,这篇新论文有以下几点新东西:
1、原来用向量来表示一个Capsule,现在用矩阵来表示;
2、聚类算法换成了GMM(高斯混合模型);
3、在实验部分,实现了Capsule版的卷积。
基于Conv1D的光谱分类模型(一维序列分类)
By 苏剑林 | 2018-05-02 | 116147位读者 | 引用前段时间天池出了个天文数据挖掘竞赛——LAMOST光谱分类(将对应的光谱识别为4类中的一类),虽然没有奖金,但还是觉得挺有意思,所以就报名参加了。做了一段时间,成绩自我感觉还可以,然而最后我却忘记了(或者说根本就没留意到)初赛最后两天还有一步是提交新的测试集结果,然后就没有然后了,留下了一个未竟的模型,可谓“出师未捷身先死”,还是被自己弄死的~
后来跟其他参赛选手讨论了一下,发现其实我的这个模型还是不错的。当时我记得初赛第一名的成绩是0.83+,而我当时的成绩是0.82+,排名大概是第4、5左右,而且据说很多分数在0.8+的队伍都已经使用了融合模型,而我这0.82+的成绩仅仅是单模型的结果~在平时的群聊中发现也有不少朋友在做一维序列分类模型,而光谱分类本质上也就是一个一维的序列分类,所以分享一下模型,估计对相关朋友会有一定的参考价值。
模型
事实上也不是什么特别的模型,就是普通的一维卷积加残差,对于熟悉图像处理的朋友,这实在是再普通不过的结构了。
变分自编码器(一):原来是这么一回事
By 苏剑林 | 2018-03-18 | 947860位读者 | 引用过去虽然没有细看,但印象里一直觉得变分自编码器(Variational Auto-Encoder,VAE)是个好东西。于是趁着最近看概率图模型的三分钟热度,我决定也争取把VAE搞懂。于是乎照样翻了网上很多资料,无一例外发现都很含糊,主要的感觉是公式写了一大通,还是迷迷糊糊的,最后好不容易觉得看懂了,再去看看实现的代码,又感觉实现代码跟理论完全不是一回事啊。
终于,东拼西凑再加上我这段时间对概率模型的一些积累,并反复对比原论文《Auto-Encoding Variational Bayes》,最后我觉得我应该是想明白了。其实真正的VAE,跟很多教程说的的还真不大一样,很多教程写了一大通,都没有把模型的要点写出来~于是写了这篇东西,希望通过下面的文字,能把VAE初步讲清楚。
分布变换
通常我们会拿VAE跟GAN比较,的确,它们两个的目标基本是一致的——希望构建一个从隐变量$Z$生成目标数据$X$的模型,但是实现上有所不同。更准确地讲,它们是假设了$Z$服从某些常见的分布(比如正态分布或均匀分布),然后希望训练一个模型$X=g(Z)$,这个模型能够将原来的概率分布映射到训练集的概率分布,也就是说,它们的目的都是进行分布之间的变换。
从最大似然到EM算法:一致的理解方式
By 苏剑林 | 2018-03-15 | 142629位读者 | 引用最近在思考NLP的无监督学习和概率图相关的一些内容,于是重新把一些参数估计方法理了一遍。在深度学习中,参数估计是最基本的步骤之一了,也就是我们所说的模型训练过程。为了训练模型就得有个损失函数,而如果没有系统学习过概率论的读者,能想到的最自然的损失函数估计是平均平方误差,它也就是对应于我们所说的欧式距离。而理论上来讲,概率模型的最佳搭配应该是“交叉熵”函数,它来源于概率论中的最大似然函数。
最大似然
合理的存在
何为最大似然?哲学上有句话叫做“存在就是合理的”,最大似然的意思是“存在就是最合理的”。具体来说,如果事件$X$的概率分布为$p(X)$,如果一次观测中具体观测到的值分别为$X_1,X_2,\dots,X_n$,并假设它们是相互独立,那么
$$\mathcal{P} = \prod_{i=1}^n p(X_i)\tag{1}$$
是最大的。如果$p(X)$是一个带有参数$\theta$的概率分布式$p_{\theta}(X)$,那么我们应当想办法选择$\theta$,使得$\mathcal{L}$最大化,即
$$\theta = \mathop{\text{argmax}}_{\theta} \mathcal{P}(\theta) = \mathop{\text{argmax}}_{\theta}\prod_{i=1}^n p_{\theta}(X_i)\tag{2}$$
变分自编码器(二):从贝叶斯观点出发
By 苏剑林 | 2018-03-28 | 456822位读者 | 引用源起
前几天写了博文《变分自编码器(一):原来是这么一回事》,从一种比较通俗的观点来理解变分自编码器(VAE),在那篇文章的视角中,VAE跟普通的自编码器差别不大,无非是多加了噪声并对噪声做了约束。然而,当初我想要弄懂VAE的初衷,是想看看究竟贝叶斯学派的概率图模型究竟是如何与深度学习结合来发挥作用的,如果仅仅是得到一个通俗的理解,那显然是不够的。
所以我对VAE继续思考了几天,试图用更一般的、概率化的语言来把VAE说清楚。事实上,这种思考也能回答通俗理解中无法解答的问题,比如重构损失用MSE好还是交叉熵好、重构损失和KL损失应该怎么平衡,等等。
建议在阅读《变分自编码器(一):原来是这么一回事》后对本文进行阅读,本文在内容上尽量不与前文重复。
准备
在进入对VAE的描述之前,我觉得有必要把一些概念性的内容讲一下。
基于CNN的阅读理解式问答模型:DGCNN
By 苏剑林 | 2018-04-15 | 429755位读者 | 引用2019.08.20更新:开源了一个Keras版(https://kexue.fm/archives/6906)
早在年初的《Attention is All You Need》的介绍文章中就已经承诺过会分享CNN在NLP中的使用心得,然而一直不得其便。这几天终于下定决心来整理一下相关的内容了。
背景
事不宜迟,先来介绍一下模型的基本情况。
模型特点
本模型——我称之为DGCNN——是基于CNN和简单的Attention的模型,由于没有用到RNN结构,因此速度相当快,而且是专门为这种WebQA式的任务定制的,因此也相当轻量级。SQUAD排行榜前面的模型,如AoA、R-Net等,都用到了RNN,并且还伴有比较复杂的注意力交互机制,而这些东西在DGCNN中基本都没有出现。
这是一个在GTX1060上都可以几个小时训练完成的模型!
DGCNN,全名为Dilate Gated Convolutional Neural Network,即“膨胀门卷积神经网络”,顾名思义,融合了两个比较新的卷积用法:膨胀卷积、门卷积,并增加了一些人工特征和trick,最终使得模型在轻、快的基础上达到最佳的效果。在本文撰写之时,本文要介绍的模型还位于榜首,得分(得分是准确率与F1的平均)为0.7583,而且是到目前为止唯一一个一直没有跌出前三名、并且获得周冠军次数最多的模型。
最小熵原理(二):“当机立断”之词库构建
By 苏剑林 | 2018-04-24 | 81490位读者 | 引用在本文,我们介绍“套路宝典”第一式——“当机立断”:1、导出平均字信息熵的概念,然后基于最小熵原理推导出互信息公式;2、并且完成词库的无监督构建、给出一元分词模型的信息熵诠释,从而展示有关生成套路、识别套路的基本方法和技巧。
这既是最小熵原理的第一个使用案例,也是整个“套路宝典”的总纲。
你练或者不练,套路就在那里,不增不减。
为什么需要词语
从上一篇文章可以看到,假设我们根本不懂中文,那么我们一开始会将中文看成是一系列“字”随机组合的字符串,但是慢慢地我们会发现上下文是有联系的,它并不是“字”的随机组合,它应该是“套路”的随机组合。于是为了减轻我们的记忆成本,我们会去挖掘一些语言的“套路”。第一个“套路”,是相邻的字之间的组合定式,这些组合定式,也就是我们理解的“词”。
平均字信息熵
假如有一批语料,我们将它分好词,以词作为中文的单位,那么每个词的信息量是$-\log p_w$,因此我们就可以计算记忆这批语料所要花费的时间为
$$-\sum_{w\in \text{语料}}\log p_w\tag{2.1}$$
这里$w\in \text{语料}$是对语料逐词求和,不用去重。如果不分词,按照字来理解,那么需要的时间为
$$-\sum_{c\in \text{语料}}\log p_c\tag{2.2}$$
最近评论