23 Feb

SVD分解(三):连Word2Vec都只不过是个SVD?

这篇文章要带来一个“重磅”消息,如标题所示,居然连大名鼎鼎的深度学习词向量工具Word2Vec都只不过是个SVD!

当然,Word2Vec的超级忠实粉丝们,你们也不用太激动,这里只是说模型结构上是等价的,并非完全等价,Word2Vec还是有它的独特之处。只不过,经过我这样解释之后,估计很多问题就可以类似想通了。

词向量=one hot

让我们先来回顾一下去年的一篇文章《词向量与Embedding究竟是怎么回事?》,这篇文章主要说的是:所谓Embedding层,就是一个one hot的全连接层罢了(再次强调,这里说的完全等价,而不是“相当于”),而词向量,就是这个全连接层的参数;至于Word2Vec,就通过大大简化的语言模型来训练Embedding层,从而得到词向量(它的优化技巧有很多,但模型结构就只是这么简单);词向量能够减少过拟合风险,是因为用Word2Vec之类的工具、通过大规模语料来无监督地预训练了这个Embedding层,而跟one hot还是Embedding还是词向量本身没啥关系。

有了这个观点后,马上可以解释我们以前的一个做法为什么可行了。在做情感分类问题时,如果有了词向量,想要得到句向量,最简单的一个方案就是直接对句子中的词语的词向量求和或者求平均,这约能达到85%的准确率。事实上这也是facebook出品的文本分类工具FastText的做法了(FastText还多引入了ngram特征,来缓解词序问题,但总的来说,依旧是把特征向量求平均来得到句向量)。为什么这么一个看上去毫不直观的、简单粗暴的方案也能达到这么不错的准确率?

点击阅读全文...

11 Mar

【中文分词系列】 8. 更好的新词发现算法

如果依次阅读该系列文章的读者,就会发现这个系列共提供了两种从0到1的无监督分词方案,第一种就是《【中文分词系列】 2. 基于切分的新词发现》,利用相邻字凝固度(互信息)来做构建词库(有了词库,就可以用词典法分词);另外一种是《【中文分词系列】 5. 基于语言模型的无监督分词》,后者基本上可以说是提供了一种完整的独立于其它文献的无监督分词方法。

但总的来看,总感觉前面一种很快很爽,却又显得粗糙;后面一种很好很强大,却又显得太过复杂(viterbi是瓶颈之一)。有没有可能在两者之间折中一下?这就导致了本文的结果,达到了速度与效果的平衡。至于为什么说“更好”?因为笔者研究词库构建也有一段时间了,以往构建的词库总不能让人(让自己)满意,生成的词库一眼看上去,都能够扫到不少不合理的地方,真的要用得需要经过较多的人工筛选。而这一次,一次性生成的词库,一眼扫过去,不合理的地方少了很多,如果不细看,可能就发现不了了。

分词的目的

点击阅读全文...

23 Mar

梯度下降和EM算法:系出同源,一脉相承

PS:本文就是梳理了梯度下降与EM算法的关系,通过同一种思路,推导了普通的梯度下降法、pLSA中的EM算法、K-Means中的EM算法,以此表明它们基本都是同一个东西的不同方面,所谓“横看成岭侧成峰,远近高低各不同”罢了。

在机器学习中,通常都会将我们所要求解的问题表示为一个带有未知参数的损失函数(Loss),如平均平方误差(MSE),然后想办法求解这个函数的最小值,来得到最佳的参数值,从而完成建模。因将函数乘以-1后,最大值也就变成了最小值,因此一律归为最小值来说。如何求函数的最小值,在机器学习领域里,一般会流传两个大的方向:1、梯度下降;2、EM算法,也就是最大期望算法,一般用于复杂的最大似然问题的求解。

在通常的教程中,会将这两个方法描述得迥然不同,就像两大体系在分庭抗礼那样,而EM算法更是被描述得玄乎其玄的感觉。但事实上,这两个方法,都是同一个思路的不同例子而已,所谓“本是同根生”,它们就是一脉相承的东西。

让我们,先从远古的牛顿法谈起。

牛顿迭代法

给定一个复杂的非线性函数$f(x)$,希望求它的最小值,我们一般可以这样做,假定它足够光滑,那么它的最小值也就是它的极小值点,满足$f'(x_0)=0$,然后可以转化为求方程$f'(x)=0$的根了。非线性方程的根我们有个牛顿法,所以
\begin{equation}x_{n+1} = x_{n} - \frac{f'(x_n)}{f''(x_n)}\end{equation}

点击阅读全文...

2 Apr

【不可思议的Word2Vec】 1.数学原理

对于了解深度学习、自然语言处理NLP的读者来说,Word2Vec可以说是家喻户晓的工具,尽管不是每一个人都用到了它,但应该大家都会听说过它——Google出品的高效率的获取词向量的工具。

Word2Vec不可思议?

大多数人都是将Word2Vec作为词向量的等价名词,也就是说,纯粹作为一个用来获取词向量的工具,关心模型本身的读者并不多。可能是因为模型过于简化了,所以大家觉得这样简化的模型肯定很不准确,所以没法用,但它的副产品词向量的质量反而还不错。没错,如果是作为语言模型来说,Word2Vec实在是太粗糙了。

但是,为什么要将它作为语言模型来看呢?抛开语言模型的思维约束,只看模型本身,我们就会发现,Word2Vec的两个模型 —— CBOW和Skip-Gram —— 实际上大有用途,它们从不同角度来描述了周围词与当前词的关系,而很多基本的NLP任务,都是建立在这个关系之上,如关键词抽取、逻辑推理等。这几篇文章就是希望能够抛砖引玉,通过介绍Word2Vec模型本身,以及几个看上去“不可思议”的用法,来提供一些研究此类问题的新思路。

点击阅读全文...

7 Apr

【不可思议的Word2Vec】 3.提取关键词

本文主要是给出了关键词的一种新的定义,并且基于Word2Vec给出了一个实现方案。这种关键词的定义是自然的、合理的,Word2Vec只是一个简化版的实现方案,可以基于同样的定义,换用其他的模型来实现。

说到提取关键词,一般会想到TF-IDF和TextRank,大家是否想过,Word2Vec还可以用来提取关键词?而且,用Word2Vec提取关键词,已经初步含有了语义上的理解,而不仅仅是简单的统计了,而且还是无监督的!

什么是关键词?

诚然,TF-IDF和TextRank是两种提取关键词的很经典的算法,它们都有一定的合理性,但问题是,如果从来没看过这两个算法的读者,会感觉简直是异想天开的结果,估计很难能够从零把它们构造出来。也就是说,这两种算法虽然看上去简单,但并不容易想到。试想一下,没有学过信息相关理论的同学,估计怎么也难以理解为什么IDF要取一个对数?为什么不是其他函数?又有多少读者会破天荒地想到,用PageRank的思路,去判断一个词的重要性?

说到底,问题就在于:提取关键词和文本摘要,看上去都是一个很自然的任务,有谁真正思考过,关键词的定义是什么?这里不是要你去查汉语词典,获得一大堆文字的定义,而是问你数学上的定义。关键词在数学上的合理定义应该是什么?或者说,我们获取关键词的目的是什么?

点击阅读全文...

12 Apr

【语料】百度的中文问答数据集WebQA

信息抽取

众所周知,百度知道上有大量的人提了大量的问题,并且得到大量的回复。然而,百度知道上的回复者貌似懒人居多,他们往往喜欢直接在网上复制粘贴一大片来作为回答内容,而且这些内容可能跟问题相关,也可能跟问题不相关,比如

https://zhidao.baidu.com/question/557785746.html

问:广州白云山海拨多高

答:广州白云山(Guangzhou Baiyun Mountain),是新 “羊城八景”之首、国家4A级景区和国家重点风景名胜区。它位于广州市的东北部,为南粤名山之一,自古就有“羊城第一秀”之称。山体相当宽阔,由30多座山峰组成,为广东最高峰九连山的支脉。面积20.98平方公里,主峰摩星岭高382米(注:最新测绘高度为372.6米——国家测绘局,2008年),峰峦重叠,溪涧纵横,登高可俯览全市,遥望珠江。每当雨后天晴或暮春时节,山间白云缭绕,蔚为奇观,白云山之名由此得来

点击阅读全文...

1 May

【不可思议的Word2Vec】 4.不一样的“相似”

相似度的定义

当用Word2Vec得到词向量后,一般我们会用余弦相似度来比较两个词的相似程度,定义为
$$\cos (\boldsymbol{x}, \boldsymbol{y}) = \frac{\boldsymbol{x}\cdot\boldsymbol{y}}{|\boldsymbol{x}|\times|\boldsymbol{y}|}$$
有了这个相似度概念,我们既可以比较任意两个词之间的相似度,也可以找出跟给定词最相近的词语。这在gensim的Word2Vec中,由most_similar函数实现。

等等!我们很快给出了相似度的计算公式,可是我们居然还没有“定义”相似!连相似都没有定义,怎么就得到了评估相似度的数学公式了呢?

要注意,这不是一个可以随意忽略的问题。很多时候我们都不知道我们干的是什么,就直接去干了。好比上一篇文章说到提取关键词,相信很多人都未曾想过,什么是关键词,难道就仅仅说关键词就是很“关键”的词?而如果想到,关键词就是用来估计文章大概讲什么的,这样我们就得到一种很自然的关键词定义
$$keywords = \mathop{\text{argmax}}_{w\in s}p(s|w)$$
进而可以用各种方法对它建模。

回到本文的主题来,相似度怎么定义呢?答案是:看场景定义所需要的相似。

点击阅读全文...

17 May

如何“扒”站?手把手教你爬百度百科~

最近有需求要爬一些儿童故事类的语料用来训练词向量,因此找了一些童话故事网把整站的童话文章爬了下来。下面分享一下用Python实现的这个过程,并把之前爬取百度百科的经验,结合着分享出来。本教程适合于以下需求:需要遍历爬取指定的网站、并且指定网站没有反爬虫措施。在这种前提之下,所考验我们的仅仅是遍历算法编程技巧了。

假设

再次表明我们的假设:

1、需要遍历整个网站来爬取我们需要的信息;

2、网站没有反爬虫措施;

3、网站的所有页面,总可以通过网站首页,逐步点击超链接来到达。

点击阅读全文...