词向量与Embedding究竟是怎么回事?
By 苏剑林 | 2016-12-03 | 273442位读者 | 引用词向量,英文名叫Word Embedding,按照字面意思,应该是词嵌入。说到词向量,不少读者应该会立马想到Google出品的Word2Vec,大牌效应就是不一样。另外,用Keras之类的框架还有一个Embedding层,也说是将词ID映射为向量。由于先入为主的意识,大家可能就会将词向量跟Word2Vec等同起来,而反过来问“Embedding是哪种词向量?”这类问题,尤其是对于初学者来说,应该是很混淆的。事实上,哪怕对于老手,也不一定能够很好地说清楚。
这一切,还得从one hot说起...
五十步笑百步
one hot,中文可以翻译为“独热”,是最原始的用来表示字、词的方式。为了简单,本文以字为例,词也是类似的。假如词表中有“科、学、空、间、不、错”六个字,one hot就是给这六个字分别用一个0-1编码:
$$\begin{array}{c|c}\hline\text{科} & [1, 0, 0, 0, 0, 0]\\
\text{学} & [0, 1, 0, 0, 0, 0]\\
\text{空} & [0, 0, 1, 0, 0, 0]\\
\text{间} & [0, 0, 0, 1, 0, 0]\\
\text{不} & [0, 0, 0, 0, 1, 0]\\
\text{错} & [0, 0, 0, 0, 0, 1]\\
\hline
\end{array}$$
2017年快乐!Responsive Geekg for Typecho
By 苏剑林 | 2016-12-31 | 33839位读者 | 引用获取并处理中文维基百科语料
By 苏剑林 | 2017-01-06 | 106971位读者 | 引用中文语料库中,质量高而又容易获取的语料库,应该就是维基百科的中文语料了,而且维基百科相当厚道,每个月都把所有条目都打包一次(下载地址在这里:https://dumps.wikimedia.org/zhwiki/),供全世界使用,这才是真正的“取之于民,回馈于民”呀。遗憾的是,由于天朝的无理封锁,中文维基百科的条目到目前只有91万多条,而百度百科、互动百科都有千万条了(英文维基百科也有上千万了)。尽管如此,这并没有阻挡中文维基百科成为几乎是最高质量的中文语料库。(百度百科、互动百科它们只能自己用爬虫爬取,而且不少记录质量相当差,几乎都是互相复制甚至抄袭。)
门槛
尽量下载很容易,但是使用维基百科语料还是有一定门槛的。直接下载下来的维基百科语料是一个带有诸多html和markdown标记的文本压缩包,基本不能直接使用。幸好,已经有热心的高手为我们写好了处理工具,主要有两个:1、Wikipedia Extractor;2、gensim的wikicorpus库。它们都是基于python的。
然而,这两个主流的处理方法都不能让我满意。首先,Wikipedia Extractor提取出来的结果,会去掉{{}}标记的内容,这样会导致下面的情形
西方语言中“数学”(;)一词源自于古希腊语的()
【中文分词系列】 7. 深度学习分词?只需一个词典!
By 苏剑林 | 2017-03-06 | 114956位读者 | 引用这个系列慢慢写到第7篇,基本上也把分词的各种模型理清楚了,除了一些细微的调整(比如最后的分类器换成CRF)外,剩下的就看怎么玩了。基本上来说,要速度,就用基于词典的分词,要较好地解决组合歧义何和新词识别,则用复杂模型,比如之前介绍的LSTM、FCN都可以。但问题是,用深度学习训练分词器,需要标注语料,这费时费力,仅有的公开的几个标注语料,又不可能赶得上时效,比如,几乎没有哪几个公开的分词系统能够正确切分出“扫描二维码,关注微信号”来。
本文就是做了这样的一个实验,仅用一个词典,就完成了一个深度学习分词器的训练,居然效果还不错!这种方案可以称得上是半监督的,甚至是无监督的。
狄拉克函数:级数逼近
By 苏剑林 | 2017-01-11 | 45168位读者 | 引用魏尔斯特拉斯定理
将狄拉克函数理解为函数的极限,可以衍生出很丰富的内容,而且这些内容离严格的证明并不遥远。比如,定义
$$\delta_n(x)=\left\{\begin{aligned}&\frac{(1-x^2)^n}{I_n},x\in[-1,1]\\
&0,\text{其它情形}\end{aligned}\right.$$
其中$I_n = \int_{-1}^1 (1-x^2)^n dx$,于是不难证明
$$\delta(x)=\lim_{n\to\infty}\delta_n(x)$$
这样,对于$[a,b]$上的连续函数$f(x)$,我们就得到
$$f(x)=\int_{-1}^1 f(y)\delta(x-y)dy = \lim_{n\to\infty}\int_{-1}^1 f(y)\delta_n(x-y) dy$$
这里$-1 < a < b < 1$,并且我们已经“不严谨”地交换了积分号和极限号,但这不是特别重要。重要的是它的结果:可以看到
$$P_n(x)=\int_{-1}^1 f(y)\delta_n(x-y) dy$$
是$x$的一个$2n$次多项式,因此上式表明$f(x)$是一个$2n$次的多项式的极限!这就引出了著名的“魏尔斯特拉斯定理”:
闭区间上的连续函数都可以用多项式一致地逼近。
SVD分解(一):自编码器与人工智能
By 苏剑林 | 2017-01-15 | 48550位读者 | 引用咋看上去,SVD分解是比较传统的数据挖掘手段,自编码器是深度学习中一个比较“先进”的概念,应该没啥交集才对。而本文则要说,如果不考虑激活函数,那么两者将是等价的。进一步的思考就可以发现,不管是SVD还是自编码器,我们降维,并不是纯粹地为了减少储存量或者减少计算量,而是“智能”的初步体现。
等价性
假设有一个$m$行$n$列的庞大矩阵$M_{m\times n}$,这可能使得计算甚至存储上都成问题,于是考虑一个分解,希望找到矩阵$A_{m\times k}$和$B_{k\times n}$,使得
$$M_{m\times n}=A_{m\times k}\times B_{k\times n}$$
这里的乘法是矩阵乘法。如图
SVD分解(二):为什么SVD意味着聚类?
By 苏剑林 | 2017-01-26 | 74654位读者 | 引用提前祝各位读者新年快乐,2017行好运~
这篇文章主要想回答两个“为什么”的问题:1、为啥我就对SVD感兴趣了?;2、为啥我说SVD是一个聚类过程?回答的内容纯粹个人思辨结果,暂无参考文献。
为什么要研究SVD?
从2015年接触深度学习到现在,已经研究了快两年的深度学习了,现在深度学习、数据科学等概念也遍地开花。为什么在深度学习火起来的时候,我反而要回去研究“古老”的SVD分解呢?我觉得,SVD作为一个矩阵分解算法,它的价值不仅仅体现在它广泛的应用,它背后还有更加深刻的内涵,即它的可解释性。在深度学习流行的今天,不少人还是觉得深度学习(神经网络)就是一个有效的“黑箱”模型。但是,仅用“黑箱”二字来解释深度学习的有效性显然不能让人满意。前面已经说过,SVD分解本质上与不带激活函数的三层自编码机等价,理解SVD分解,能够为神经网络模型寻求一个合理的概率解释。
Python的多进程编程技巧
By 苏剑林 | 2017-02-19 | 37911位读者 | 引用过程
在Python中,如果要多进程运算,一般是通过multiprocessing来实现的,常用的是multiprocessing中的进程池,比如:
from multiprocessing import Pool
import time
def f(x):
time.sleep(1)
print x+1
return x+1
a = range(10)
pool = Pool(4)
b = pool.map(f, a)
pool.close()
pool.join()
print b
这样写简明清晰,确实方便,有趣的是,只需要将multiprocessing换成multiprocessing.dummy,就可以将程序从多进程改为多线程了。
最近评论