7 Aug

旋转的弹簧将如何伸长(2)?

弹簧

弹簧

上一次我从密度的角度讨论了旋转的弹簧伸长的问题,由于对弹性形变等问题是初涉,所以花了好大功夫。这几天重新认识了一下胡克定律,并且从另外的角度给出了这道题目的一个相对简单的解法。在此把它记录下来,并写写我对弹性形变的一些粗浅看法。

在解答的过程中,我再次体验到了殊途同归的感觉,科学就是这样的奇妙,一个目的地往往有着不止一条道路,不同的道路会给我们不同的科学视觉,最终领略到不同的科学美景;多走几条路,更能够让我们从不同的角度领略美不胜收的科学,这也是众多旅游爱好者不辞千里地观赏美景的原因!

点击阅读全文...

15 Aug

《方程与宇宙》:拉格朗日点的点点滴滴(四)

The New Calculation Of Lagrangian Point 1,2,3

L2_rendering

L2_rendering

关于n体问题,选择质心或其他定点为参考点,我们可以列出下面的运动方程:
$$\ddot{\vec{r}}_k=\sum_{i=1,i != k}^{n} Gm_i\frac{\vec{r}_i-\vec{r}_k}{|\vec{r}_i-\vec{r}_k|^3}\tag{19}$$
现在我们只考虑三体问题。天文学家一直希望能够找到三体问题的简洁解,可是很遗憾,庞加莱已经证明了三体问题的解是混沌的,也就是说任何微小的扰动都有可能造成不可预料的后果(可以形象的比喻为:巴西的一只蝴蝶翅膀的扇动,有可能因此美国的一场龙卷风)。

点击阅读全文...

11 Aug

谈谈“民科”——兼谈如何推翻爱恩斯坦?

推翻相对论

推翻相对论

民科,是“平民科学家”的简称,本来,无论怎么看,这个词都是一个褒义词,代表了一群默默进行科学研究的人,本来,我等天文爱好者都可以用上“民科”这一漂亮词语。然而,“得益于”某些民科(至少在中国是这样的)的狂妄自大,使得“民科”成为了另外一群人的代名词。他们他们从最基础的物理学比如牛顿力学开始,就和正统的物理学分道扬镳。他们使用的专业术语跟正统的物理学都不同。你说东,他说西,以致于民科和专业人士完全不能交流。还有一些民科从易经八卦这些所谓的哲学原理出发,提出一些自以为是的邪乎学说,完全不在物理学的轨道上。这一群人,仿佛自认为自己是救世主,他们就是崭新而又来源已久的新“民科”。由此看,民科和物理学之间存在一个无法沟通的真空。

点击阅读全文...

16 Aug

《方程与宇宙》:拉格朗日点,复数,向量(五)

The New Calculation Of Lagrangian Point 4,5

上一回我们已经求出了拉格朗日点L1,L2,L3,并且希望能够求出L4,L5两个点。由于L4,L5与“地球-太阳”连线已经不共线了,所以前边的方法貌似不能够用了。为了得到一个通用的定义,我们可以采用以下方法来描述拉格朗日点:位于拉格朗日点的天体,它与太阳的连线以及地球与太阳的连线所组成的角的大小是恒定的。(这里为了方便,采用了地日系的拉格朗日点来描述,对于一般的三体问题是一样的)

对于L4,L5来说,我们或许可以设置一个新的向量来描述这两点的向径(如$\vec{R}$)。当我们这样做后,很快就会发现这样会令我们的计算走向死胡同。因为我们发现:已知两个向量的夹角和其中一个向量,我们很难把另一个向量用已知向量的式子表达出来。不能做到这一点,就不能找出$\vec{R}$与$\vec{r}$的关系,就无法联立方程求解。难道,我们这一条路走到尽头了吗?一开始BoJone也冥思苦想不得头绪,但是...

点击阅读全文...

27 Aug

与向量的渊源极深的四元数

当我们在使用向量进行几何、物理研究的时候,是否曾经想到:向量竟然起源于“数”?

当向量还没有发展起来的时候(虽然“有方向有大小的量”很早就被人们认识),复数已经得到了认可并且有了初步应用。当我们把复数跟向量联系起来时,我们也许会认为,因为复平面表示的复数运算与向量有着相似之处,才把复数跟几何联系起来。然而事实却相反,向量是从对复数乃至一种称为“四元数”的东西的研究中逐渐分离出来的。换句话说,历史中出现过“四元数”与向量分别研究几何的阶段,麦克斯韦(Maxwell) 将四元 数的数量部分和矢量部分分开,作为 实 体处理,作了大量的矢量分析。三维矢量分析的建立,及同四元数的正式分裂是18世纪80年代由Gibbs和Heaviside独立完成的。矢量代数被推广到矢量函数和矢量微积分,由此开始了四元数和矢量分析的争论,最终矢量分析占了上风。因而“四元数”渐渐离开了教科书。不过,“四元数”的一些特殊而巧妙的应用,仍然使我们不至于忘记它。

点击阅读全文...

28 Aug

月球上的多角度反射镜

各反射镜在月球上的位置

各反射镜在月球上的位置

很多读者都听说过,现在地球上可以发射激光到月球,反射回来,通过计算一来一回的时间来测量地月距离。现在问题是,怎样的镜子才能够把来自不同角度的光都以相同的方向反射回去呢?实现这一目的的镜子称为“多角度反射镜”。

点击阅读全文...

29 Aug

计算夏至的精确时刻2——提高精确度

之前曾经得到过一条计算夏至精确时间的公式,现在检验一下(之前推导是根据了2009年的数据)

公元Y年的夏至日期为该年的6月
$$21.9938+0.2422Y-\lfloor Y/4 \rfloor-\lfloor Y/400 \rfloor+\lfloor Y/100 \rfloor$$
其中$\lfloor x \rfloor$表示整数部分。

点击阅读全文...

10 Sep

级数求和——近似的无穷级数

级数是数学的一门很具有实用性的分支,而级数求和则是级数研究中的核心内容之一。很多问题都可以表示成一个级数的和或积,也就是$\sum_{i=1}^n f(i)$或者是$\prod_{i=1}^n f(i)$类型的运算。其中,$\ln(\prod_{i=1}^n f(i))=\sum_{i=1}^n \ln(f(i))=k$,因此$\prod_{i=1}^n f(i)=e^k$,也就是说,级数求积也可以变为级数求和来计算,换言之我们可以把精力放到级数求和上去。

为了解决一般的级数求和问题,我们考虑以下方程的解:
$$f(x+\epsilon)-f(x)=g(x)\tag{1}$$其中g(x)是已知的以x为变量的函数式,$\epsilon $是常数,初始条件是$f(k)=b$,要求f(x)的表达式。

点击阅读全文...