“让Keras更酷一些!”:层与模型的重用技巧
By 苏剑林 | 2019-09-29 | 103653位读者 | 引用今天我们继续来深挖Keras,再次体验Keras那无与伦比的优雅设计。这一次我们的焦点是“重用”,主要是层与模型的重复使用。
所谓重用,一般就是奔着两个目标去:一是为了共享权重,也就是说要两个层不仅作用一样,还要共享权重,同步更新;二是避免重写代码,比如我们已经搭建好了一个模型,然后我们想拆解这个模型,构建一些子模型等。
基础
事实上,Keras已经为我们考虑好了很多,所以很多情况下,掌握好基本用法,就已经能满足我们很多需求了。
层的重用
层的重用是最简单的,将层初始化好,存起来,然后反复调用即可:
x_in = Input(shape=(784,))
x = x_in
layer = Dense(784, activation='relu') # 初始化一个层,并存起来
x = layer(x) # 第一次调用
x = layer(x) # 再次调用
x = layer(x) # 再次调用
“让Keras更酷一些!”:层中层与mask
By 苏剑林 | 2019-07-16 | 145543位读者 | 引用这一篇“让Keras更酷一些!”将和读者分享两部分内容:第一部分是“层中层”,顾名思义,是在Keras中自定义层的时候,重用已有的层,这将大大减少自定义层的代码量;另外一部分就是应读者所求,介绍一下序列模型中的mask原理和方法。
层中层
在《“让Keras更酷一些!”:精巧的层与花式的回调》一文中我们已经介绍过Keras自定义层的基本方法,其核心步骤是定义build
和call
两个函数,其中build
负责创建可训练的权重,而call
则定义具体的运算。
拒绝重复劳动
经常用到自定义层的读者可能会感觉到,在自定义层的时候我们经常在重复劳动,比如我们想要增加一个线性变换,那就要在build
中增加一个kernel
和bias
变量(还要自定义变量的初始化、正则化等),然后在call
里边用K.dot
来执行,有时候还需要考虑维度对齐的问题,步骤比较繁琐。但事实上,一个线性变换其实就是一个不加激活函数的Dense
层罢了,如果在自定义层时能重用已有的层,那显然就可以大大节省代码量了。
思考:两个椭圆片能粘合成一个立体吗?
By 苏剑林 | 2019-07-21 | 58187位读者 | 引用开源一版DGCNN阅读理解问答模型(Keras版)
By 苏剑林 | 2019-08-20 | 71388位读者 | 引用去年写过《基于CNN的阅读理解式问答模型:DGCNN》,介绍了一个纯卷积的简单的问答模型。当时是用Tensorflow实现的,而且没有开源,这几天抽空用Keras复现了一下,决定开源。
模型综述
关于DGCNN的基本介绍,这里不再赘述。本文的模型并不是之前模型的重复实现,而是有所改动,这里只介绍一下被改动的地方。
1、这里放出的模型,线下验证集的分数大概是0.72(之前大约是0.75);
2、本次模型以字为单位,使用笔者之前探索出来的“字词混合Embedding”(之前是以词为单位);
3、本次模型完全去掉了人工特征(之前用了8个人工特征);
4、本次模型去掉了位置Embedding(之前将位置Embedding拼接到输入上);
5、模型架构和训练细节有所微调。
从语言模型到Seq2Seq:Transformer如戏,全靠Mask
By 苏剑林 | 2019-09-18 | 321320位读者 | 引用相信近一年来(尤其是近半年来),大家都能很频繁地看到各种Transformer相关工作(比如Bert、GPT、XLNet等等)的报导,连同各种基础评测任务的评测指标不断被刷新。同时,也有很多相关的博客、专栏等对这些模型做科普和解读。
俗话说,“外行看热闹,内行看门道”,我们不仅要在“是什么”这个层面去理解这些工作,我们还需要思考“为什么”。这个“为什么”不仅仅是“为什么要这样做”,还包括“为什么可以这样做”。比如,在谈到XLNet的乱序语言模型时,我们或许已经从诸多介绍中明白了乱序语言模型的好处,那不妨更进一步思考一下:
为什么Transformer可以实现乱序语言模型?是怎么实现的?RNN可以实现吗?
本文从对Attention矩阵进行Mask的角度,来分析为什么众多Transformer模型可以玩得如此“出彩”的基本原因,正如标题所述“Transformer如戏,全靠Mask”,这是各种花式Transformer模型的重要“门道”之一。
读完本文,你或许可以了解到:
1、Attention矩阵的Mask方式与各种预训练方案的关系;
2、直接利用预训练的Bert模型来做Seq2Seq任务。
修改Transformer结构,设计一个更快更好的MLM模型
By 苏剑林 | 2020-08-07 | 52340位读者 | 引用大家都知道,MLM(Masked Language Model)是BERT、RoBERTa的预训练方式,顾名思义,就是mask掉原始序列的一些token,然后让模型去预测这些被mask掉的token。随着研究的深入,大家发现MLM不单单可以作为预训练方式,还能有很丰富的应用价值,比如笔者之前就发现直接加载BERT的MLM权重就可以当作UniLM来做Seq2Seq任务(参考这里),又比如发表在ACL 2020的《Spelling Error Correction with Soft-Masked BERT》将MLM模型用于文本纠错。
然而,仔细读过BERT的论文或者亲自尝试过的读者应该都知道,原始的MLM的训练效率是比较低的,因为每次只能mask掉一小部分的token来训练。ACL 2020的论文《Fast and Accurate Deep Bidirectional Language Representations for Unsupervised Learning》也思考了这个问题,并且提出了一种新的MLM模型设计,能够有更高的训练效率和更好的效果。
必须要GPT3吗?不,BERT的MLM模型也能小样本学习
By 苏剑林 | 2020-09-27 | 149062位读者 | 引用大家都知道现在GPT3风头正盛,然而,到处都是GPT3、GPT3地推,读者是否记得GPT3论文的名字呢?事实上,GPT3的论文叫做《Language Models are Few-Shot Learners》,标题里边已经没有G、P、T几个单词了,只不过它跟开始的GPT是一脉相承的,因此还是以GPT称呼它。顾名思义,GPT3主打的是Few-Shot Learning,也就是小样本学习。此外,GPT3的另一个特点就是大,最大的版本多达1750亿参数,是BERT Base的一千多倍。
正因如此,前些天Arxiv上的一篇论文《It's Not Just Size That Matters: Small Language Models Are Also Few-Shot Learners》便引起了笔者的注意,意译过来就是“谁说一定要大的?小模型也可以做小样本学习”。显然,这标题对标的就是GPT3,于是笔者饶有兴趣地点进去看看是谁这么有勇气挑战GPT3,又是怎样的小模型能挑战GPT3?经过阅读,原来作者提出通过适当的构造,用BERT的MLM模型也可以做小样本学习,看完之后颇有一种“原来还可以这样做”的恍然大悟感~在此与大家分享一下。
用ALBERT和ELECTRA之前,请确认你真的了解它们
By 苏剑林 | 2020-10-29 | 68680位读者 | 引用在预训练语言模型中,ALBERT和ELECTRA算是继BERT之后的两个“后起之秀”。它们从不同的角度入手对BERT进行了改进,最终提升了效果(至少在不少公开评测数据集上是这样),因此也赢得了一定的口碑。但在平时的交流学习中,笔者发现不少朋友对这两个模型存在一些误解,以至于在使用过程中浪费了不必要的时间。在此,笔者试图对这两个模型的一些关键之处做下总结,供大家参考,希望大家能在使用这两个模型的时候少走一些弯路。
(注:本文中的“BERT”一词既指开始发布的BERT模型,也指后来的改进版RoBERTa,我们可以将BERT理解为没充分训练的RoBERTa,将RoBERTa理解为更充分训练的BERT。本文主要指的是它跟ALBERT和ELECTRA的对比,因此不区分BERT和RoBERTa。)
最近评论