关于自由落体公式的简单修正
By 苏剑林 | 2010-04-04 | 67060位读者 | 引用自由落体的一般定义是:只考虑吸引天体和被吸引天体的引力因素,忽略其他的运动和大气摩擦等因素,物体从静止(相对于吸引天体)开始接近吸引天体的运动。根据这个定义,假设地球为一个均匀球体,半径为r,质量为M,物体从距离地表h高度处自由落下。求落到地面的时间t,或者根据时间t求h。
令s为t时刻物体左右下落的物体与地表的距离,忽略物体的小质量,那么可以列出微分方程:
$$\frac{d^2 s}{dt^2}=-\frac{GM}{(r+s)^2}\tag{1}$$并且初始条件是$t=0,s=h,\dot{s}=v=0$
在实际应用中,我们不必求出这道微分方程的精确解,因为这个解极其麻烦,在之前曾经讨论过。我们只需要求出一个有足够精确度的近似解就行。
2010年4月全球天文月(One People,One Sky)
By 苏剑林 | 2010-04-06 | 77380位读者 | 引用直上云霄的无穷指数方程
By 苏剑林 | 2010-02-06 | 29899位读者 | 引用科学空间:2010年5月重要天象
By 苏剑林 | 2010-04-24 | 20573位读者 | 引用函数图像旋转公式(“想当然”的教训)
By 苏剑林 | 2010-02-09 | 100161位读者 | 引用【NASA每日一图】夜晚发射的“奋进号”
By 苏剑林 | 2010-02-09 | 18272位读者 | 引用寒假结束,今天上学了
By 苏剑林 | 2010-02-21 | 28767位读者 | 引用越来越佩服前人,说出了“光阴似箭,日月如梭”的真理。是呀,期末考试仿佛只是在昨天,今天已经又要上学了;俯仰之间,一个月的时间就过去了。
毫无疑问,又因为我的懒惰和不坚持,浪费了我很多的时间。回想一下寒假,我究竟收获了什么呢?主要是两个方面吧:学术和情感。
学术上,主要是数学和天文学里面的内容。数学我主要是深入了微积分方面的内容,把微积分的思想深刻了一点点,把微分方程(组)熟悉了一点点。我有一种很熟悉的感觉:现在自学高等数学,就好比我之前在小学时间学习中学数学。那时候超傻,书本上说了$\lim_{\Delta x->0} f'(x)=\frac{f(x+\Delta x)-f(x)}{\Delta x}$,我看不懂这个式子,整天郁闷$f(x)$是不是指$f\cdot (x)$。不过尽管那时候不懂这些,还是懂应用,我用导数最基本的定义去求极值,得出了一些有趣的发现,使我的兴趣倍增。现在学习微积分也是这样的感觉,我觉得我仅仅是很显浅地接触到,还有很多等待仔细琢磨....
最近评论