28 Dec

《费恩曼物理讲义》在线版

在线阅读地址:
http://www.feynmanlectures.caltech.edu/

刚在浏览《朗道集结号》的微博时,发现了这一造福大众的消息。难得的是,这个在线版通过MathJax使用Latex排版,阅读效果完全丝毫不输于纸质版的,还可以自由复制。只是遗憾只有英文版的,也许有一天心血来潮,我也弄个在线的中文版出来,呵呵。一切皆有可能。

费曼的物理讲义是一套地地道道的物理书,它是一次美妙的物理之旅。纵使你可能已经读过相当多的物理教材,但是读读费曼的讲义还是大有裨益的,它给我们讲述了什么才是物理,怎么才能学物理。

11 Mar

一维弹簧的运动(上)

我们通常用一个波动方程来描述弦的振动,但是,弦的振动是二维的,也就是说,它的“波”是在垂直方向的位移。让我们来考虑一根一端固定的一维理想弹簧,胡克系数为$k$,它的松弛状态是均匀的,线密度是$\rho$,长度是$l$,质量是$m$。

如何弹?
我们要分析这根弹簧的运动,即给定弹簧的初始状态,看弹簧的密度如何变化,这种情况类似于“横波”。但是,弹簧本身是连续介质,这是我们不熟悉的,但是我们可以将它离散化,将它看成无数个小质点的弹簧链。如下图

离散的弹簧

离散的弹簧

点击阅读全文...

4 Mar

平面曲线的曲率的复数表示

开学已经是第二周了,我的《微分几何》也上课两周了,进度比较慢,现在才讲到平面曲线的曲率。在平面曲线$\boldsymbol{t}(t)=(x(t),y(t))$某点上可以找出单位切向量。
$$\boldsymbol{t}=\left(\frac{dx}{ds},\frac{dy}{ds}\right)$$
其中$ds^2 =dx^2+dy^2$,将这个向量逆时针旋转90度之后,就可以定义相应的单位法向量$\boldsymbol{n}$,即$\boldsymbol{t}\cdot\boldsymbol{n}=0$。

常规写法

让我们用弧长$s$作为参数来描述曲线方程,$\boldsymbol{t}(s)=(x(s),y(s))$,函数上的一点表示对$s$求导。那么我们来考虑$\dot{\boldsymbol{t}}$,由于$\boldsymbol{t}^2=1$,对s求导得到
$$\boldsymbol{t}\cdot\dot{\boldsymbol{t}}=0$$

点击阅读全文...

11 Jan

几何的数与数的几何:超复数的浅探究

这也是我的期末论文之一...全文共17页,包括了四元数的构造方法,初等应用等。附录包括行列式与体积、三维旋转的描述等。使用LaTex进行写作(LaTex会让你爱上数学写作的)

几何的数与数的几何
――超复数的浅探究

摘要
今天,不论是数学还是物理的高维问题,都采用向量分析为基本工具,数学物理中难觅四元数的影子。然而在历史上,四元数的发展有着重要的意义。四元数(Quaternion)运算实际上是向量分析的“鼻祖”,向量点积和叉积的概念也首先出现在四元数的运算中,四元数的诞生还标记着非交换代数的开端。即使是现在,四元数还是计算机描述三维空间旋转问题最简单的工具。另外,作为复数的推广,四元数还为某些复数问题的一般化提供了思路。

本文把矩阵与几何适当地结合起来,利用矩阵行列式$\det (AB) =(\det A)(\det B)$这一性质得出了四元数以及更高维的超复数的生成规律,并讨论了它的一些性质以及它在描述旋转方面的应用。部分证明细节和不完善的思想放到了附录之中。

点击阅读全文...

13 Mar

一维弹簧的运动(下)

在上一篇文章中,我们得到了一维弹簧运动的方程
$$m\frac{\partial^2 X}{\partial t^2}=k\frac{\partial^2 X}{\partial \xi^2}$$
并且得到了通解
$$X=F(u)+H(v)=F(\xi+\beta t)+H(\xi-\beta t)$$
或者
$$X(\xi,t)=\frac{1}{2}\left[X_0(\xi+\beta t)+X_0(\xi-\beta t)\right]+\frac{1}{2\beta}\int_{\xi-\beta t}^{\xi+\beta t} X_1 (s)ds$$
在文章的末尾,提到过这个解是有些问题的。现在让我们来详细分析它。

点击阅读全文...

19 Jan

宇宙驿站服务器升级完毕

这一周科学空间时断时续的,原因是原来的服务器两个内存条坏了,内存不够用。

后来天文台决定给我们换一台服务器,这两天主要在转移数据,从而不能访问。

目前,基本上已经转移好了,服务器升级工作基本完成。新服务器的升级,CPU从原来的8核升级为48核,内存从16GB升级为64GB。再次感谢国家天文台宇宙驿站给予我们的服务^_^感谢各位技术人员的努力,让我们一起把中文科普事业做得更好~

14 Feb

情人节?元宵节!

元宵节快乐

元宵节快乐

今天是2014年2月14日,农历正月十五,传统的元宵佳节,祝大家元宵节快乐!

不过虽说是元宵佳节,但是我们这里的习俗却没有闹元宵的,好像在我们这里元宵节就像普通的初一十五一样,惯例地上个香,祭下神而已,唯一特别的地方就是早上妈妈放了个鞭炮,什么汤圆、灯笼、灯谜都没有呢。不过这并不妨碍我欣赏元宵节,印象里好像上学以来这是第一次在家过元宵节。幸好没有参加美国数学建模,不然又少了半个月的假期,少了一次难得的元宵,而多了得不偿失的劳动...

今天也是西方的情人节,但在这里我只强调元宵节。首要原因却不是我目前单身(当然这也是原因之一^_^),而是元宵节是中国传统节日。我这个人有个奇怪的“嗜好”,反正越潮流的东西我越不跟。于是乎,既然那么多人都庆祝着西方节日(什么万圣节、圣诞节、情人节),那么我就偏不凑这个热闹。我又想起了去年圣诞前夕有个师弟过来向我们宣传和推销圣诞的东西,被我批了一顿,我直言说“你为什么不等元旦再来?”。我想,如果哪一天,我也有机会庆祝情人节,我也只是庆祝中国的情人节,总感觉中国的情人节美多了:七夕,Qixi Festival,多美!不论是典故还是习俗都更美~

点击阅读全文...

7 Feb

视频演示:费曼的茶杯

为了形象地展示为什么有些系统需要旋转720度而不是360度才能恢复原状,费曼想到了一个“茶杯法”。看了“茶杯法”的步骤之后,我突然想起了电影《太极1》的梁小龙的一个端药镜头,正好对应着费曼的“茶杯法”,遂把镜头剪了出来,供大家欣赏。

请仔细观察梁小龙的手转了多少圈?

点击阅读全文...