变分自编码器(七):球面上的VAE(vMF-VAE)
By 苏剑林 | 2021-05-17 | 131734位读者 | 引用在《变分自编码器(五):VAE + BN = 更好的VAE》中,我们讲到了NLP中训练VAE时常见的KL散度消失现象,并且提到了通过BN来使得KL散度项有一个正的下界,从而保证KL散度项不会消失。事实上,早在2018年的时候,就有类似思想的工作就被提出了,它们是通过在VAE中改用新的先验分布和后验分布,来使得KL散度项有一个正的下界。
该思路出现在2018年的两篇相近的论文中,分别是《Hyperspherical Variational Auto-Encoders》和《Spherical Latent Spaces for Stable Variational Autoencoders》,它们都是用定义在超球面的von Mises–Fisher(vMF)分布来构建先后验分布。某种程度上来说,该分布比我们常用的高斯分布还更简单和有趣~
KL散度消失
我们知道,VAE的训练目标是
\begin{equation}\mathcal{L} = \mathbb{E}_{x\sim \tilde{p}(x)} \Big[\mathbb{E}_{z\sim p(z|x)}\big[-\log q(x|z)\big]+KL\big(p(z|x)\big\Vert q(z)\big)\Big]
\end{equation}
关于维度公式“n > 8.33 log N”的可用性分析
By 苏剑林 | 2021-09-27 | 39256位读者 | 引用在之前的文章《最小熵原理(六):词向量的维度应该怎么选择?》中,我们基于最小熵思想推导出了一个词向量维度公式“$n > 8.33\log N$”,然后在《让人惊叹的Johnson-Lindenstrauss引理:应用篇》中我们进一步指出,该结果与JL引理所给出的$\mathcal{O}(\log N)$是吻合的。
既然理论上看上去很完美,那么自然就有读者发问了:实验结果如何呢?8.33这个系数是最优的吗?本文就对此问题的相关内容做一个简单汇总。
词向量
首先,我们可以直接,当$N$为10万时,$8.33\log N\approx 96$,当$N$为500万时,$8.33\log N\approx 128$。这说明,至少在数量级上,该公式给出的结果是很符合我们实际所用维度的,因为在词向量时代,我们自行训练的词向量维度也就是100维左右。可能有读者会质疑,目前开源的词向量多数是300维的,像BERT的Embedding层都达到了768维,这不是明显偏离了你的结果了?
用狄拉克函数来构造非光滑函数的光滑近似
By 苏剑林 | 2021-10-10 | 73292位读者 | 引用在机器学习中,我们经常会碰到不光滑的函数,但我们的优化方法通常是基于梯度的,这意味着光滑的模型可能更利于优化(梯度是连续的),所以就有了寻找非光滑函数的光滑近似的需求。事实上,本博客已经多次讨论过相关主题,比如《寻求一个光滑的最大值函数》、《函数光滑化杂谈:不可导函数的可导逼近》等,但以往的讨论在方法上并没有什么通用性。
不过,笔者从最近的一篇论文《SAU: Smooth activation function using convolution with approximate identities》学习到了一种比较通用的思路:用狄拉克函数来构造光滑近似。通用到什么程度呢?理论上有可数个间断点的函数都可以用它来构造光滑近似!个人感觉还是非常有意思的。
也来盘点一些最近的非Transformer工作
By 苏剑林 | 2021-05-24 | 59397位读者 | 引用大家最近应该多多少少都被各种MLP相关的工作“席卷眼球”了。以Google为主的多个研究机构“奇招频出”,试图从多个维度“打击”Transformer模型,其中势头最猛的就是号称是纯MLP的一系列模型了,让人似乎有种“MLP is all you need”时代到来的感觉。
这一顿顿让人眼花缭乱的操作背后,究竟是大道至简下的“返璞归真”,还是江郎才尽后的“冷饭重炒”?让我们也来跟着这股热潮,一起盘点一些最近的相关工作。
五月人倍忙
怪事天天有,五月特别多。这个月以来,各大机构似乎相约好了一样,各种非Transformer的工作纷纷亮相,仿佛“忽如一夜春风来,千树万树梨花开”。单就笔者在Arxiv上刷到的相关论文,就已经多达七篇(一个月还没过完,七篇方向极其一致的论文),涵盖了NLP和CV等多个任务,真的让人应接不暇:
我们可以无损放大一个Transformer模型吗(一)
By 苏剑林 | 2021-06-02 | 56314位读者 | 引用看了标题,可能读者会有疑惑,大家不都想着将大模型缩小吗?怎么你想着将小模型放大了?其实背景是这样的:通常来说更大的模型加更多的数据确实能起得更好的效果,然而算力有限的情况下,从零预训练一个大的模型时间成本太大了,如果还要调试几次参数,那么可能几个月就过去了。
这时候“穷人思维”就冒出来了(土豪可以无视):能否先训练一个同样层数的小模型,然后放大后继续训练?这样一来,预训练后的小模型权重经过放大后,就是大模型一个起点很高的初始化权重,那么大模型阶段的训练步数就可以减少了,从而缩短整体的训练时间。
那么,小模型可以无损地放大为一个大模型吗?本文就来从理论上分析这个问题。
含义
有的读者可能想到:这肯定可以呀,大模型的拟合能力肯定大于小模型呀。的确,从拟合能力角度来看,这件事肯定是可以办到的,但这还不是本文关心的“无损放大”的全部。
从一个单位向量变换到另一个单位向量的正交矩阵
By 苏剑林 | 2021-06-05 | 41869位读者 | 引用这篇文章我们来讨论一个比较实用的线性代数问题:
给定两个$d$维单位(列)向量$\boldsymbol{a},\boldsymbol{b}$,求一个正交矩阵$\boldsymbol{T}$,使得$\boldsymbol{b}=\boldsymbol{T}\boldsymbol{a}$。
由于两个向量模长相同,所以很显然这样的正交矩阵必然存在,那么,我们怎么把它找出来呢?
二维
不难想象,这本质上就是$\boldsymbol{a},\boldsymbol{b}$构成的二维子平面下的向量变换(比如旋转或者镜面反射)问题,所以我们先考虑$d=2$的情形。
SimBERTv2来了!融合检索和生成的RoFormer-Sim模型
By 苏剑林 | 2021-06-11 | 108342位读者 | 引用去年我们放出了SimBERT模型,它算是我们开源的比较成功的模型之一,获得了不少读者的认可。简单来说,SimBERT是一个融生成和检索于一体的模型,可以用来作为句向量的一个比较高的baseline,也可以用来实现相似问句的自动生成,可以作为辅助数据扩增工具使用,这一功能是开创性的。
近段时间,我们以RoFormer为基础模型,对SimBERT相关技术进一步整合和优化,最终发布了升级版的RoFormer-Sim模型。
简介
RoFormer-Sim是SimBERT的升级版,我们也可以通俗地称之为“SimBERTv2”,而SimBERT则默认是指旧版。从外部看,除了基础架构换成了RoFormer外,RoFormer-Sim跟SimBERT没什么明显差别,事实上它们主要的区别在于训练的细节上,我们可以用两个公式进行对比:
\begin{array}{c}
\text{SimBERT} = \text{BERT} + \text{UniLM} + \text{对比学习} \\[5pt]
\text{RoFormer-Sim} = \text{RoFormer} + \text{UniLM} + \text{对比学习} + \text{BART} + \text{蒸馏}\\
\end{array}
对比学习可以使用梯度累积吗?
By 苏剑林 | 2021-06-17 | 58207位读者 | 引用在之前的文章《用时间换取效果:Keras梯度累积优化器》中,我们介绍过“梯度累积”,它是在有限显存下实现大batch_size效果的一种技巧。一般来说,梯度累积适用的是loss是独立同分布的场景,换言之每个样本单独计算loss,然后总loss是所有单个loss的平均或求和。然而,并不是所有任务都满足这个条件的,比如最近比较热门的对比学习,每个样本的loss还跟其他样本有关。
那么,在对比学习场景,我们还可以使用梯度累积来达到大batch_size的效果吗?本文就来分析这个问题。
简介
一般情况下,对比学习的loss可以写为
\begin{equation}\mathcal{L}=-\sum_{i,j=1}^b t_{i,j}\log p_{i,j} = -\sum_{i,j=1}^b t_{i,j}\log \frac{e^{s_{i,j}}}{\sum\limits_j e^{s_{i,j}}}=-\sum_{i,j=1}^b t_{i,j}s_{i,j} + \sum_{i=1}^b \log\sum_{j=1}^b e^{s_{i,j}}\label{eq:loss}\end{equation}
这里的$b$是batch_size;$t_{i,j}$是事先给定的标签,满足$t_{i,j}=t_{j,i}$,它是一个one hot矩阵,每一列只有一个1,其余都为0;而$s_{i,j}$是样本$i$和样本$j$的相似度,满足$s_{i,j}=s_{j,i}$,一般情况下还有个温度参数,这里假设温度参数已经整合到$s_{i,j}$中,从而简化记号。模型参数存在于$s_{i,j}$中,假设为$\theta$。
最近评论